

LARP Users Guide
Third edition

Marco Lavoie

Copyright © 2004-2008 Marco Lavoie

LARP Users Guide
Third edition

Printed on 12/02/2008

Marco Lavoie

Copyright © 2004-2008 Marco Lavoie

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, registering, or otherwise, without the prior written
permission of the author.

All images, pseudo codes, flowcharts, screen captures and interface elements presented in this publication
are for illustrative purposes only and may differ from reality. Consequently, all descriptions and walkthrough
published herein are provided on a «as is» basis, and the user shall bare all responsibilities related to their
use.

All terms mentioned in this book that are known to be trademarks or registered marks have been
appropriately annotated. Use of such a term in this publication should not be regarded as affecting the
validity of any trademark or registered mark.

The author as made every effort to make the descriptions, pseudo codes, flowcharts and illustrations in this
publication as complete, as accurate and as bug free as possible. The author shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this publication.

Copyright © 2004-2006 Marco Lavoie iii

LARP Users Guide

Table of content

1� Introduction ... 17�
1.1� License agreement .. 18�

1.1.1� Freeware version .. 18�
1.1.2� Shareware version ... 19�
1.1.3 .. 19�

1.2� LARP's author ... 21�
1.3� Installation ... 21�

1.3.1� Minimal requirements in hardware and software ... 21�
1.3.2� Installation from a CD ... 22�
1.3.3� Installation from a downloaded file ... 22�
1.3.4� Uninstallation .. 22�

1.4� Registration ... 23�
1.4.1� Registration procedure ... 24�
1.4.2� Ordering super user keys ... 25�

1.5� LARP updates ... 26�
1.6� Technical support .. 27�

1.6.1� Online help ... 27�
1.6.2� Bug reports ... 28�
1.6.3� LARP's Web site .. 30�

2� Development environment .. 33�
2.1� Help available in LARP ... 33�
2.2� Interface elements ... 33�

2.2.1� Top menu ... 35�
2.2.2� Control panel .. 38�
2.2.3� Document browser ... 40�
2.2.4� Template panel ... 40�
2.2.5� Editors .. 41�
2.2.6� Message panel ... 43�
2.2.7� Status panel ... 43�
2.2.8� Execution console .. 44�
2.2.9� Step execution window... 45�

2.3� Textual editor functionalities.. 46�
2.3.1� Editing a textual document ... 46�
2.3.2� Search and replace .. 46�
2.3.3� Syntax highlight .. 47�
2.3.4� Textual editor configuration .. 48�
2.3.5� Textual editor's edit commands .. 48�

2.3.5.1� Textual editor commands accessible through menus 48�
2.3.5.2� Textual editor commands accessible through the keyboard 49�
2.3.5.3� Mouse control in the textual editor.. 49�

2.4� Graphical editor functionalities .. 50�
2.4.1� Flowchart instructions... 50�
2.4.2� Editing a flowchart .. 51�
2.4.3� Manipulating flowchart instructions .. 52�

2.4.3.1� Inserting, moving and deleting flowchart instructions 53�
2.4.3.2� Editing flowchart instructions .. 54�

2.4.4� Search and replace in a flowchart .. 55�
2.4.5� Zooming the display ... 55�
2.4.6� Instructions highlighting in step execution.. 55�
2.4.7� Graphical editor configuration .. 56�

iv Copyright © 2004-2008 Marco Lavoie

2.4.8� Graphical editor’s edit commands .. 56�
2.4.8.1� Graphical editor commands accessible through menus................................... 56�
2.4.8.2� Graphical editor commands accessible through the keyboard 56�
2.4.8.3� Mouse control in the graphical editor.. 57�

2.5� Compilation and execution .. 58�
2.5.1� Running a project ... 58�
2.5.2� Step execution .. 59�

2.5.2.1� Step execution interface ... 59�
2.5.2.2� Step execution modes .. 61�
2.5.2.3� Variables inspection ... 62�
2.5.2.4� Call stack inspection ... 63�
2.5.2.5� Break points .. 63�
2.5.2.6� Animation .. 65�

2.5.3� Security backups .. 67�
2.5.4� Warnings and errors ... 67�

2.6� Configuration of LARP .. 68�
2.6.1� General configuration ... 68�

2.6.1.1� Configuration of editors .. 69�
2.6.1.2� Configuration of the execution console .. 70�
2.6.1.3� Configuration of the super user mode and the updating system 71�

2.6.2� Color selection .. 72�
2.6.2.1� Colors in the execution console .. 73�
2.6.2.2� Colors in the editors .. 73�
2.6.2.3� Colors for step execution .. 74�

3� Super user mode .. 75�
3.1� Plagiarism prevention .. 75�

3.1.1� Active username ... 76�
3.1.2� Username attached to project files ... 77�
3.1.3� Document encryption ... 77�
3.1.4� Cut and paste restrictions .. 78�
3.1.5� Printing restrictions ... 79�

3.2� Unlocking the development environment .. 79�
3.2.1� Selecting a key technology .. 80�
3.2.2� Project statistics ... 80�
3.2.3� Converting flowcharts to pseudo code ... 81�
3.2.4� Public project files .. 82�

4� My first algorithm .. 83�
4.1� Comments ... 83�
4.2� Begin point and end point of an algorithm .. 84�
4.3� Syntax of instructions .. 84�
4.4� Separation of instructions .. 85�
4.5� Creating a LARP project ... 86�

5� Constants and variables ... 91�
5.1� Variable names ... 91�
5.2� Operations ... 92�
5.3� Numerical values ... 92�
5.4� Character strings ... 93�
5.5� Escape sequences .. 93�
5.6� Assignment.. 94�

6� Containers... 95�
6.1� Grouping values together .. 95�
6.2� Access to container elements ... 95�
6.3� Retrieving container elements... 96�

7� Inputs and outputs .. 99�
7.1� Input/output instruction for flowcharts ... 99�
7.2� Read instruction .. 100�

Copyright © 2004-2006 Marco Lavoie v

7.3� Write instruction .. 101�
7.4� Query instruction ... 102�
7.5� Separator... 103�

8� Operators and predefined functions ... 105�
8.1� Arithmetic operators .. 105�
8.2� String operators ... 106�
8.3� Container operators .. 107�
8.4� Predefined functions ... 108�

8.4.1� Predefined mathematical functions .. 108�
8.4.2� Predefined string functions ... 109�
8.4.3� Predefined container functions ... 110�

9� Conditional structures ... 111�
9.1� Conditions ... 112�
9.2� Relational operators .. 112�
9.3� Type validation .. 113�
9.4� Logical operators ... 114�
9.5� Priority of operators ... 115�
9.6� IF and IF-ELSE structures ... 116�
9.7� Embedded IF-ELSE structures ... 118�
9.8� IF-ELSE-IF structure ... 120�
9.9� SELECT structure ... 123�

10� Iterative structures .. 127�
10.1� WHILE structure ... 127�
10.2� REPEAT-UNTIL structure .. 129�
10.3� FOR structure ... 131�

11� Modules .. 135�
11.1� Module names .. 135�
11.2� Main module ... 136�
11.3� Auxiliary modules ... 137�
11.4� Local variables ... 139�
11.5� Auxiliary module parameters .. 139�

11.5.1� Parameter declarations in module header ... 140�
11.5.2� Value parameters ... 142�
11.5.3� Reference parameters.. 143�

11.6� Modules with a return value ... 145�
11.7� Alternate call syntax ... 147�

12� Files and input/output buffers ... 149�
12.1� Input/output buffers .. 149�
12.2� Files .. 150�
12.3� Input/output channels ... 151�

12.3.1� Opening a document .. 151�
12.3.2� Opening and input/output buffer ... 151�
12.3.3� Opening a file ... 152�
12.3.4� Access modes .. 153�
12.3.5� Closing an input/output channel ... 154�

12.4� Inputs through input/output channels ... 154�
12.5� Outputs through input/output channels .. 155�
12.6� Detecting end of content through input/output channels.................................... 156�

Appendix A - � Number coding 157�

A.1� Why are computers binary? ... 157�
A.2� Decimal representation of numbers ... 157�
A.3� Binary representation of numbers .. 158�
A.4� Hexadecimal representation of numbers ... 160�

Appendix B - � Recursion 163�

vi Copyright © 2004-2008 Marco Lavoie

Appendix C - � Predefined functions 165�

ABSOLUTE .. 165�
ARCTANGENT ... 166�
CEILING ... 167�
COSINUS ... 167�
COUNT ... 168�
DATE .. 169�
ENDOFCONTENT ... 170�
EXP .. 170�
FLOOR ... 171�
FORMAT .. 172�
LOG10 .. 175�
LOGE ... 176�
LOWERCASE .. 176�
MAXIMUM .. 177�
MINIMUM ... 178�
PI .. 178�
POSITION .. 179�
RANDOM ... 180�
ROUND .. 181�
SINUS .. 182�
SIZE.. 182�
SQUAREROOT .. 183�
SUBSET ... 184�
TIME ... 185�
TOCHARACTERS .. 185�
TOSTRING ... 186�
UPPERCASE ... 187�

Appendix D - � LARP’s syntax elements 189�

D.1� Modules.. 189�
D.2� Conditional structures .. 189�
D.3� Iterative structures ... 191�
D.4� Files and input/output buffers... 192�
D.5� Inputs and outputs ... 194�

Appendix E - � Warnings and errors 195�

E.1� Messages related to the development environment .. 195�
E.2� Messages related to the execution of algorithms .. 198�

Index 211�

Copyright © 2004-2006 Marco Lavoie vii

LARP Users Guide

List of figures

Figure 1-1: Freeware identification .. 19�
Figure 1-2: Shareware identification .. 19�
Figure 1-3: Registration reminder .. 23�
Figure 1-4: Registering LARP .. 25�
Figure 1-5: Super user key .. 25�
Figure 1-6: Splash window .. 25�
Figure 1-7: Downloading and installing updates ... 26�
Figure 1-8: Error messages ... 28�
Figure 1-9: Application error .. 28�
Figure 1-10: Bug report form ... 29�
Figure 1-11: Bug report files .. 30�
Figure 1-12: Bug report transmission .. 31�

Figure 2-1: Application desktop ... 34�
Figure 2-2: Control panel ... 38�
Figure 2-3: Document browser .. 40�
Figure 2-4: Pseudo code templates... 41�
Figure 2-5: Flowchart templates .. 41�
Figure 2-6: LARP's textual editor ... 42�
Figure 2-7: LARP's graphical editor ... 42�
Figure 2-8: Message panel .. 43�
Figure 2-9: Status panel .. 43�
Figure 2-10: Execution console ... 44�
Figure 2-11: Step execution window ... 45�
Figure 2-12: Textual editor panel... 46�
Figure 2-13: Search window .. 47�
Figure 2-14: Replace window .. 47�
Figure 2-15: Graphical editor panel ... 50�
Figure 2-16: New main module ... 52�
Figure 2-17: New auxiliary module .. 52�
Figure 2-18: Selected insertion node .. 52�
Figure 2-19: Selected flowchart instruction ... 52�
Figure 2-20: Inserting a flowchart instruction through an insertion node's contextual menu 53�
Figure 2-21: Editing a flowchart instruction ... 54�
Figure 2-22: Next instruction to be executed ... 55�
Figure 2-23: Highlighted break point ... 55�
Figure 2-22: Compilation state window ... 58�
Figure 2-23: Interface elements of the step execution window ... 59�
Figure 2-24 : Status panel of the step execution window .. 60�
Figure 2-25: Next instruction to execute (step mode) in the textual editor 61�
Figure 2-26: Next instruction to execute (step mode) in the graphical editor 62�
Figure 2-27: Variables inspection panel .. 62�
Figure 2-28: Call stack inspection panel ... 63�
Figure 2-29: Break points inspection panel ... 64�
Figure 2-30: Highlighted break point in the textual editor .. 64�
Figure 2-31: Highlighted break point in the graphical editor .. 65�
Figure 2-32: Step exection window's animation panel .. 66�
Figure 2-33: Animating the evaluation of a condition .. 66�
Figure 2-34: General configuration window ... 69�
Figure 2-35: Configurating algorithm execution .. 70�
Figure 2-36: Selecting a directory for temporary files.. 71�

viii Copyright © 2004-2008 Marco Lavoie

Figure 2-37: Super user mode and updating system configurations ... 71�
Figure 2-38: Unlock test .. 72�
Figure 2-39: Color configuration window ... 73�

Figure 3-1: Specifying a username.. 76
Figure 3-2: Printing documents ... 79�
Figure 3-3: Super user key (for USB port) ... 79�
Figure 3-4: Super user key (for parallel port) .. 80�
Figure 3-5: Super user mode indicator .. 80�
Figure 3-6: Project statistics .. 81�
Figure 3-7: Converting a flowchart module to pseudo code .. 81�

Figure 4-1: Comment templates .. 84
Figure 4-2: Welcome window .. 86�
Figure 4-3: Registration window .. 87�
Figure 4-4: LARP username .. 87�
Figure 4-5: New window .. 88�
Figure 4-6: LARP algorithm being edited .. 89�
Figure 4-7: Executing the algorithm... 89�
Figure 4-8: Messages generated during compilation and execution ... 90�
Figure 4-9: Saving the project ... 90�

Figure 7-1: Input/output instruction for flowcharts ... 99
Figure 7-2: Editing an input/output flowchart instruction ... 99�
Figure 7-3: Interpreting text entered on a READ instruction ... 100�
Figure 7-4: Reading values in a flowchart ... 101�
Figure 7-5: Writing to the execution console ... 101�
Figure 7-6: Writing expression values in a flowchart ... 102�
Figure 7-7: An inelegant query .. 102�
Figure 7-8: The QUERY instruction ... 103�
Figure 7-9: Insert a query in a flowchart .. 103�
Figure 7-10: Changing the separator... 104�
Figure 7-11: Using the separator to properly read data .. 104�

Figure 9-1: Compound condition ... 116
Figure 9-2: Order of appreciation of the previous condition .. 116�
Figure 9-3: Graphical representation of the order in which operators are evaluated 116�

Figure 11-1: Creating an auxiliary module .. 136
Figure 11-2: Outputs from auxiliary module Menu .. 138�
Figure 11-3: Transfer of data through parameters .. 140�

Figure 12-1: Input/output buffers in a project .. 150
Figure 12-2: Specifying a channel number in a flowchart READ instruction 155�
Figure 12-3: Specifying a channel number in a flowchart WRITE instruction 156�

Figure C-1: Results of invoking ABSOLUTE ... 166�
Figure C-2: Results of invoking ARCTANGENT ... 166�
Figure C-3: Results of invoking CEILING .. 167�
Figure C-4: Results of invoking COSINUS .. 168�
Figure C-5: Results of invoking COUNT ... 169�
Figure C-6: Results of invoking DATE ... 169�
Figure C-7: Results of invoking EXP ... 171�
Figure C-8: Results of invoking FLOOR .. 171�
Figure C-9: Results of invoking FORMAT ... 175�
Figure C-10: Results of invoking LOG10 ... 175�
Figure C-11: Results of invoking LOGE .. 176�
Figure C-12: Results of invoking LOWERCASE ... 177�
Figure C-13: Results of invoking MAXIMUM ... 177�

Copyright © 2004-2006 Marco Lavoie ix

Figure C-14: Results of invoking MINIMUM .. 178�
Figure C-15: Results of invoking PI ... 179�
Figure C-16: Results of invoking POSITION ... 180�
Figure C-17: Results of invoking RANDOM .. 181�
Figure C-18: Results of invoking ROUND ... 182�
Figure C-19: Results of invoking SINUS ... 182�
Figure C-20: Results of invoking SIZE .. 183�
Figure C-21: Results of invoking SQUAREROOT ... 183�
Figure C-22: Results of invoking SUBSET .. 184�
Figure C-23: Results of invoking TIME .. 185�
Figure C-24: Results of invoking TOCHARACTERS .. 186�
Figure C-25: Results of invoking TOSTRING .. 187�
Figure C-26: Results of invoking UPPERCASE .. 187�

Copyright © 2004-2006 Marco Lavoie xi

LARP Users Guide

List of tables

Table 2-1: Commands accessible via the top menu ... 38�
Table 2-2: Interface elements in control panel .. 40�
Table 2-3: Keyboard commands for the textual editor .. 49�
Table 2-4: Flowchart instructions... 51�
Table 2-5: Graphical editor commands accessible through the keyboard 57�

Table 5-1: Escape sequences ... 93�
Table 6-1: Functions for manipulating containers ... 97�

Table 7-1: Interpretation of text read ... 100
Table 7-2: Interpretation of space in READ and WRITE instructions .. 103�

Table 8-1: Arithmetic operators ... 105
Table 8-3: Operators for character strings .. 106�
Table 8-4: Operators for container .. 107�
Table 8-5: Predefined mathematical functions .. 109�
Table 8-6: Predefined functions for handling character strings ... 109�
Table 8-7: Predefined functions for handling containers ... 110�

Table 9-1: IF conditional structure ... 111
Table 9-2: Relational operators ... 112�
Table 9-3: Logical operators .. 115�
Table 9-4: Priority of operators .. 115�
Table 9-5: Conditional structures IF and IF-ELSE ... 116�
Table 9-6: IF-ELSE-IF conditional structure .. 121�
Table 9-7: Flowchart instructions required to build an IF-ELSE-IF structure 122�
Table 9-8: SELECT structure .. 125�

Table 10-1: WHILE iterative structure ... 127
Table 10-2: REPEAT-UNTIL iterative structure ... 129�
Table 10-3: FOR iterative structure ... 131�

Table 12-1: ASCII table ... 159
Table 12-2: Correspondences between hexadecimal, decimal and binary coding 160�

Copyright © 2004-2006 Marco Lavoie xiii

LARP Users Guide

List of pseudo codes

Pseudo code 1-1: A pseudo code ... 17�

Pseudo code 4-1: Very simple pseudo code ... 83�
Pseudo code 4-2: Comments .. 83�
Pseudo code 4-3: Syntax of instructions ... 84�
Pseudo code 4-4: Separation of instructions ... 85�

Pseudo code 5-1: Variable names .. 92
Pseudo code 5-2: The operators ... 92�
Pseudo code 5-3: Numerical values .. 93�
Pseudo code 5-4: Character strings .. 93�
Pseudo code 5-5: Single and double quotes in character strings ... 93�
Pseudo code 5-6: Assignments ... 94�

Pseudo code 6-1: Containers .. 95
Pseudo code 6-2: Container in a container ... 95�
Pseudo code 6-3: Accessing elements in a container... 95�
Pseudo code 6-4: Accessing container elements ... 96�
Pseudo code 6-5: Indeterminate elements in a container ... 96�

Pseudo code 7-1: Reading a value ... 100
Pseudo code 7-2: Reading several values .. 100�
Pseudo code 7-3: Writing the value of expressions .. 101�
Pseudo code 7-4: Prompting the user for an input .. 102�
Pseudo code 7-5: The QUERY instruction .. 102�
Pseudo code 7-6: Querying for multiple inputs ... 103�
Pseudo code 7-7: The SEPARATOR instruction .. 104�
Pseudo code 7-8: Changing separator .. 104�

Pseudo code 8-1: Arithmetic operators ... 105
Pseudo code 8-2: Operator + applied to values of distinct types .. 106�
Pseudo code 8-3: Joining containers .. 107�
Pseudo code 8-4: Subtraction of containers ... 107�

Pseudo code 9-1: Simple conditions ... 113
Pseudo code 9-2: Condition testing if a value is indeterminate .. 114�
Pseudo code 9-3: Compound conditions .. 115�
Pseudo code 9-4: Conditional structures IF and IF-ELSE .. 117�
Pseudo code 9-5: Invalid IF structures .. 118�
Pseudo code 9-6: Sequence of related IF structures .. 118�
Pseudo code 9-7: Structures IF-ELSE embedded one in the other .. 119�
Pseudo code 9-8: Embedded conditional structures ... 120�
Pseudo code 9-9: IF-ELSE-IF conditional structure .. 122�
Pseudo code 9-10: IF-ELSE-IF structure testing a single variable ... 123�
Pseudo code 9-11: SELECT structure .. 124�

Pseudo code 10-1: WHILE iterative structure ... 128
Pseudo code 10-2: REPEAT-UNTIL iterative structure... 130�
Pseudo code 10-3: WHILE structure equivalent to the loop in Pseudo code 10-2 130�
Pseudo code 10-4: Iterate from one value to the next with a WHILE structure 132�
Pseudo code 10-5: FOR iterative structure ... 132�
Pseudo-code 10-6: FOR structure with step value other than 1 ... 133�
Pseudo code 10-7: Backward iterations in a FOR structure ... 133�
Pseudo-code 10-8: Backward iterations in a FOR structure with negative step value 134�

xiv Copyright © 2004-2008 Marco Lavoie

Pseudo code 10-9: Illegal FOR structure .. 134�

Pseudo code 11-1: Main module ... 136
Pseudo code 11-2: Auxiliary module ... 137�
Pseudo code 11-3: Invoking an auxiliary module .. 137�
Pseudo code 11-4: Local variables ... 139�
Pseudo code 11-5: Auxiliary module with parameters .. 140�
Pseudo code 11-6: Invoking an auxiliary module with arguments .. 141�
Pseudo code 11-7: Defining reference parameters ... 142�
Pseudo code 11-8: Call by value through value parameters .. 143�
Pseudo code 11-9: Declaring value and reference parameters .. 144�
Pseudo code 11-10: Main module ... 144�
Pseudo code 11-11: Module reading a command based on a menu .. 146�
Pseudo code 11-12: Invoking a module with return value .. 147�
Pseudo code 11-13: Alternate syntax for invoking auxiliary modules ... 147�
Pseudo code 11-14: Invoking predefined functions .. 148�

Pseudo code 12-1: Opening an input/output buffer... 151
Pseudo code 12-2: Invalid OPEN instructions .. 152�
Pseudo code 12-3: Opening a file ... 152�
Pseudo code 12-4: Closing an input/output buffer or a file ... 154�
Pseudo code 12-5: Reading from a document using an input/output channel 154�
Pseudo code 12-6: Detecting the end of a document when reading .. 156�
Pseudo code 12-7: Example invoking DATE .. 169�

Pseudo code B-1: Computing the factorial (recursive module) ... 163�
Pseudo code B-2: Computing the factorial (iterative module) ... 164�

Pseudo code C-1: Examples invoking ABSOLUTE .. 165�
Pseudo code C-2: Examples invoking ARCTANGENT ... 166�
Pseudo code C-3: Examples invoking CEILING ... 167�
Pseudo code C-4: Examples invoking COSINUS ... 168�
Pseudo code C-5: Examples invoking COUNT ... 168�
Pseudo code C-6: Examples invoking ENDOFCONTENT ... 170�
Pseudo code C-7: Examples invoking EXP .. 171�
Pseudo code C-8: Examples invoking FLOOR ... 171�
Pseudo code C-9: Examples invoking FORMAT .. 174�
Pseudo code C-10: Examples invoking LOG10 .. 175�
Pseudo code C-11: Examples invoking LOGE .. 176�
Pseudo code C-12: Examples invoking LOWERCASE .. 177�
Pseudo code C-13: Examples invoking MAXIMUM .. 177�
Pseudo code C-14: Examples invoking MINIMUM ... 178�
Pseudo code C-15: Examples invoking PI .. 179�
Pseudo code C-16: Examples invoking POSITION .. 179�
Pseudo code C-17: Examples invoking RANDOM .. 180�
Pseudo code C-18: Examples invoking ROUND .. 181�
Pseudo code C-19: Examples invoking SINUS ... 182�
Pseudo code C-20: Examples invoking SIZE .. 183�
Pseudo code C-21: Examples invoking SQUAREROOT .. 183�
Pseudo code C-22: Examples invoking SUBSET ... 184�
Pseudo code C-23: Examples invoking TIME ... 185�
Pseudo code C-24: Examples invoking TOCHARACTERS .. 186�
Pseudo code C-25: Examples invoking TOSTRING ... 187�
Pseudo code C-26: Examples invoking UPPERCASE ... 187�

Copyright © 2004-2006 Marco Lavoie xv

LARP Users Guide

List of flowcharts

Flowchart 1-1: A flowchart ... 18�

Flowchart 4-1: A very simple flowchart .. 83�
Flowchart 4-2: Syntax of instructions .. 85�
Flowchart 4-3: Extending flowchart instructions .. 86�

Flowchart 5-1: Sequential operations .. 92
Flowchart 5-2: Example of escape sequences .. 94�

Flowchart 6-1: Modifying elements of a container ... 96
Flowchart 6-2: Packing a container ... 97�

Flowchart 7-1: Changing separator ... 104

Flowchart 8-1: Concatenating character strings .. 106
Flowchart 8-2: CONTAINER type validation ... 107�

Flowchart 9-1: Condition testing the type of value in a variable .. 114
Flowchart 9-2: IF structure ... 117�
Flowchart 9-3: IF-ELSE structure .. 117�
Flowchart 9-4: Embedded conditional structures .. 121�
Flowchart 9-5: IF-ELSE-IF conditional structure ... 123�
Flowchart 9-6: Example of SELECT structure ... 124�

Flowchart 10-1: WHILE iterative structure ... 128
Flowchart 10-2: REPEAT-UNTIL iterative structure .. 130�
Flowchart 10-3: FOR iterative structure... 133�

Flowchart 11-1: Main module .. 137
Flowchart 11-2: Simple auxiliary module as flowchart .. 138�
Flowchart 11-3: Flowchart invoking an auxiliary module ... 139�
Flowchart 11-4: Auxiliary module with parameters .. 141�
Flowchart 11-5: Invoking an auxiliary module with arguments .. 141�
Flowchart 11-6: Defining reference parameters .. 142�
Flowchart 11-7: Call by value through value parameters .. 143�
Flowchart 11-8: Declaring reference parameters .. 145�
Flowchart 11-9: Auxiliary module with return value ... 146�
Flowchart 11-10: Examples of alternate call syntax .. 148�

Flowchart 12-1: Using reserved word BUFFER .. 152
Flowchart 12-2: Specifying access mode to a document .. 153�
Flowchart 12-3: Closing multiple input/output channels at once ... 154�
Flowchart 12-4: Writing in a document using an input/output channel .. 155�

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 17

1 Introduction
LARP is in fact an acronym. It is a compression of the phrase «Logics of Algorithms and
Resolution of Problems», conceived by Marco Lavoie. LARP is a programming language for the
purpose of rapid prototyping of algorithms.

LARP's main advantage over traditional programming languages is its flexible and semi natural
syntax, allowing one to formulate algorithms without the impediments of cryptic languages such
as C++, Pascal or Java.

Here is a sample LARP pseudo code indicating whether a value entered through the keyboard is
positive or negative:

 \\ Simple pseudo code
 BEGIN
 WRITE "Enter a number"
 READ N

 IF N < 0 THEN
 WRITE "Negative number"
 ELSE
 WRITE "Positive number"
 ENDIF
 END

Pseudo code 1-1: A pseudo code

As you can see in the above algorithm, LARP's syntax is straightforward and easy to understand,
even for a non-programmer.

LARP also allows algorithms to be expressed as flowcharts. Pseudo code 1-1 can be represented
equivalently in LARP as Flowchart 1-1.

LARP provides a simple and convivial development environment, allowing any user to rapidly
learn the functionalities of the software. The user therefore focuses on conceiving algorithms
rather than learning to use a complex interface or to program with an arid syntax.

The flexibility of LARP’s programming language as well as the user friendliness of its
development environment make the software particularly practical for teaching programming. The
instructor can use pseudo codes and/or flowcharts in LARP to introduce in a straightforward and
concise manner programming notions such as conditions, loops and modularity. In practice,
students can use LARP to implement and study algorithms introduced in class. In fact, a
computer science instructor for teaching structured programming originally developed LARP.

To facilitate to use of LARP in a teaching environment, its development environment offers online
help, presenting LARP’s programming syntax in pedagogic form. The online documentation
allows one not only to learn to program algorithms, but also to exploit programming notions such
as variables and containers, conditional and iterative structures, modularity and data storage.
These programming concepts are thoroughly explained and put into context through concrete
examples, making them easier to learn.

1. Introduction LARP Users Guide

18 Copyright © 2004-2008 Marco Lavoie

Flowchart 1-1: A flowchart

LARP is educational software essential to teaching algorithms and structured programming.
Whether it is used in class or simply by its own, LARP makes programming a breeze to learn.

1.1 License agreement

LARP is distributed as freeware as well as shareware. Both versions are identical except for the
following functionalities:

� The freeware version does not support plagiarism prevention functionalities while the
registered shareware version does.

� Automatic updates are not available in the freeware version (updates must be performed
manually) while they are automatically downloaded and installed in the registered
shareware version.

� The super user mode is not supported in the freeware version since plagiarism
prevention is not available. The shareware version offers super user mode when
plagiarism prevention functionalities are activated during installation.

Both versions of LARP are distributed within the same installation file. The version to be installed
is selected during installation.

1.1.1 Freeware version

LARP is available as freeware, a fully functional version of software released by its author to the
public so they can use it without cost.

Freely downloadable, a freeware is by definition free! Users installing and using the freeware
have no financial obligation towards its author. The distribution of LARP in freeware version is
however limited according to restrictions stipulated in the license agreement (see section 0 for
details).

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 19

Once installed, the freeware version of LARP is easily identifiable by the title bar of the
development environment’s main window:

Figure 1-1: Freeware identification

LARP’s splash window also indicates which version is currently running.

1.1.2 Shareware version

LARP is also available as shareware, a fully functional version of software released by its author
to allow the public to test it prior to getting involved financially. This form of software release is
similar to a period of « free try » during which the author gives users a chance to assess a
software in a most obvious and efficient manner: by using it as though they had bought it.

Freely downloadable, a shareware is not however free. A moral contract links the author to
whoever installs the software. It stipulates that if the user wishes to continue using the product at
the end of the evaluation period, and for that matter keep it installed on his computer, he is
obligated to buy a license. In other words, once having used the shareware for a predetermined
number of days, the user must drop by the cash register to pay for the product. If for whatever
reason he does not wish to acquire it, the product must return to the shelves, which in this context
means the shareware must be uninstalled from the user's computer.

Once installed, the shareware version of LARP is easily identifiable by the title bar of the
development environment’s main window:

Figure 1-2: Shareware identification

LARP’s splash window also indicates which version is currently running.

License

Here is the license agreement permitting to evaluate LARP. Please read carefully what follows
before using the software. The use of the software implies that you agree to all terms of this
license agreement.

This software (LARP) is distributed as freeware (i.e. it's free) and as shareware (i.e not free). The user selects which
version to install during the installation process. Both versions are identical except the freeware version does not offer
plagiarism prevention functionalities. Read LARP's user's guide (or its online help) for details.

All terms of this license is applicable to both versions except the first section which is specific to each version.

Freeware version

This software is distributed as freeware, which means it can be installed and used by anyone without costs nor
registration requirements. Distributing a complete or limited version (in terms of functionalities) of a software as
freeware means the author does not expect users to pay for using the software.

Here is the license agreement permitting to use the freeware. Please read carefully what follows before using the
freeware. The use of the freeware implies that you agree to all terms of this license agreement.

1. Introduction LARP Users Guide

20 Copyright © 2004-2008 Marco Lavoie

Shareware version

This software is distributed as shareware, a fully functional version of software released by its author to allow the
public to test it prior to getting involved financially. In accordance with the terms specified hereafter, the shareware
can be used free of charge, for evaluation purposes, for a period extending up to 120 days from installation date.

Here is the license agreement permitting to evaluate the shareware. Please read carefully what follows before using
the shareware. The use of the shareware implies that you agree to all terms of this license agreement.

Distribution

You are authorized to duplicate the unregistered (i.e. evaluation) version of this software and to distribute it without
alterations by electronic means (Internet, BBS' s, CD, etc).

Other than a reasonable participation relating to your expenses (ex: packaging), you are not allowed to charge for
duplication or distribution of this software. You must not state under any circumstances that you sell the software
itself.

You cannot, under any circumstances, ask for any compensation relating to the use of this software itself. The
distribution of the shareware version cannot imply any kind of services nor support on behalf of the author.

Registered version

A registered version of this software can only be used by a single person on one or several computers. You can run
this software across a network as long as you acquired as many individual licenses as there are computers likely to
run the software across the network. For instance, if six different hosts can run the software across the network, you
need a registered license for six users, whether they use the software at various times or simultaneously.

Restrictions of use

You are not allowed to alter this software in any way, or to add, to remove or to modify any message or dialogue box.
You may not decompile, reverse engineer, disassemble or transform this software into any form of source code. You
must not change, lend, rent or sell this software.

You may not publish or distribute algorithms or utilities for the purpose of generating registration codes for this
software. You may not also publish information related to registration codes, nor distribute or publish such registration
codes, without written approval of the author.

Restrictions of warrantee

This software is provided « as is » and without warrantees related to its execution, its performances, its street value or
any other matter, whether expressed or implied. Since the author has no regards on the various hardware and
software configurations of computers on which this software may be installed, no guarantee of compatibility or
conformity is given. Good practice dictates that any new software must be thoroughly tested by the user with non-
critical data before using it with critical data. The user bares all risks related to usage of this software. The
responsibility of the seller is exclusively limited to the replacement of the product or the reimbursement of its purchase
price.

Copyright

This product is Copyright © 2004-2008 Marco Lavoie.

It is protected by the Canadian law relating to copyrights and by international conventions. You acknowledge that no
rights regarding intellectual ownership of this software are transferred to you. You acknowledge that full rights of this
software remain the sole ownership of the author, and that you acquire no rights others than those specifically stated
in this license agreement.

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 21

1.2 LARP's author

The author of LARP is:

Name: Marco Lavoie
M. Sc. in Computer science and mathematics

Mail address: 1, Avenue du Parc
Gatineau, Qc (Canada)
J8Y 1G5

Electronic mail: info@marcolavoie.ca

Web site: www.marcolavoie.ca

1.3 Installation

The installation program for LARP installs on your computer the software with all related files and
utilities. Once the installation is completed and in accordance with the directives provided during
installation, you can start LARP in any of the following ways:

· Through the LARP directory;

· Through the Start button, under Programs » LARP ;

· Through an icon located on the computer's Desktop ;

· Through a button located in the Quick Launch area of the desktop.

Initiating LARP 's installation program varies depending on whether the program is on CD or is
downloaded via Internet.

The installation CD or installation file allows to install both versions of LARP (freeware and
shareware) in multiple languages, among which English and French.

1.3.1 Minimal requirements in hardware and software

Here are minimal system configurations to install and run LARP:

Hardware requirements:

· PC type computer

· 64 Mb of RAM (random access memory)

· 5 Mb of free space on hard drive

· CD drive (if LARP is to be installed from a CD)

Software requirements:

· Microsoft® Windows® 95, 98, ME, NT, on 2000 or XP.

· Netscape Browser 3.01, Netscape Communicator 4.x or Microsoft® Internet Explorer
v4.0, or more recent versions of these utilities.

1. Introduction LARP Users Guide

22 Copyright © 2004-2008 Marco Lavoie

1.3.2 Installation from a CD

Here is the installation process when LARP is to be installed from a CD:

1. Start your computer and wait for Windows® to finish loading.
IMPORTANT: If Windows® is already running, close all applications before proceeding
with the installation of LARP.

2. If an anti-virus utility is running, temporarily deactivate it prior to installing LARP.

3. Insert LARP 's installation CD (label upwards) in the computer's CD drive.

4. If LARP 's installation program does not start automatically, it must be started manually:

4.1. Open My Computer (from the desktop) or start Windows Explorer .

4.2. Click twice on the letter corresponding to the CD drive (in general D:, E: or F:).

4.3. Click twice on the Setup file.

Follow instructions displayed on screen to install the software.

1.3.3 Installation from a downloaded file

If LARP 's installation program was downloaded via Internet, the downloaded file's name should
be LarpSetup.exe .

To install LARP from the downloaded file, follow these instructions:

1. Start your computer and wait for Windows® to finish loading.
IMPORTANT: If Windows® is already running, close all applications before proceeding
with the installation of LARP.

2. If an anti-virus utility is running, temporarily deactivate it prior to installing LARP. It is
recommended to verify that the downloaded file is virus free.

3. Open My Computer (from the desktop) or start Windows Explorer .

4. Find the downloaded installation file LarpXxSetup.exe (where Xx varies according to
the interface language). If you experience difficulties in locating the file on your computer,
use the Search tool in Windows Explorer .

5. Click twice on file LarpSetup.exe .

Follow instructions displayed on screen to install the software.

1.3.4 Uninstallation

LARP 's installation program also installs an automated uninstallation script on the computer.
When run, the script removes:

· All files related to LARP (the executables, documentation files and sample files
distributed with the software), and

· The launch links located on the Desktop , in the Quick Launch area and in the Start
menu.

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 23

While the uninstallation script removes all files related to the LARP software, all project files
created by the user prior to uninstallation remain on the computer.

To uninstall LARP, follow these instructions:

1. Click on the Start button and choose Settings , then Control Panel .

2. Click twice on the Add/Remove programs icon.

3. Browse through the list of programs and select LARP version # (where # is the version
number of LARP installed on the computer).

4. Click on the Change/Remove button.

Once the software is uninstalled, click the OK button to conclude the uninstallation process.

1.4 Registration
This section of the guide is relevant exclusively to the shareware version of LARP.

As stated in the license agreement, you must register LARP in shareware version once the
evaluation period has expired. Otherwise, you are required to stop using the software and
uninstall it from your computers.

During the evaluation period, a registration reminder (see Figure 1-3) is automatically displayed
on every start-up (and eventually on shutdown) of the software. This window enumerates the
benefits of registration and indicates the remaining number of days to the evaluation period (the
notice blinks when the evaluation period has expired).

Figure 1-3: Registration reminder

1. Introduction LARP Users Guide

24 Copyright © 2004-2008 Marco Lavoie

As stated in the license agreement to which you agreed upon installation of the shareware
version of LARP, you must cease to evaluate LARP once the evaluation period ends. You then
have three alternatives:

1. Register LARP and keep on using it.

2. Uninstall LARP from your computers and cease using it.

3. Uninstall LARP and install its freeware version.

Any attempt to circumvent the evaluation period by uninstalling then re-installing the shareware
version of LARP is strictly prohibited by the license agreement. Such attempts are automatically
detected and blocked by LARP.

1.4.1 Registration procedure
This section of the guide is relevant exclusively to the shareware version of LARP.

To register LARP, you must acquire a registration key (alphanumeric sequence required to
transform an evaluation version of the software into a registered version):

· To buy a registration key by credit card through a secured Web site, see LARP's web
site. The registration process through Internet is rapid, registration keys being sent by
electronic mail (i.e. email) within minutes following clearance of the financial transaction.

· For those who are reluctant to buy by credit card over Internet, it is possible to transmit
credit card information by fax. Processing orders received by fax takes more time than
orders received over Internet, so a few days may be necessary for registration keys to be
sent via email.

· Orders may also be paid by check or money order. See LARP's web site for more
information.

When in possession of your registration key, you may access the Registering LARP window
(Figure 1-4) via the Proceed with registration button in the registration reminder window (Figure
1-3), or through the top menu. Fill out fields with information received upon registration (i.e. your
registration name and key). Your evaluation version LARP will then be converted into a registered
version, and registration reminders will no longer be displayed.

To install LARP on another computer once it has been registered, you will have to repeat the
above procedure for entering registration data. Note however that the license agreement imposes
restrictions on installing LARP on more than one computer.

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 25

Figure 1-4: Registering LARP

1.4.2 Ordering super user keys
This section of the guide is relevant exclusively to the shareware version of LARP.

A super user key is required to activate LARP's super user mode (available only in the shareware
version of the software). Every key is pre-programmed with a unique and permanent username.

Figure 1-5: Super user key

To order super user keys, you must own a registered license of the LARP shareware. When
ordering keys you will be to provide your registration name and key, as well as your license
number as they appear in LARP's Splash window (see Figure 1-6). This window can be displayed
anytime through LARP’s top menu.

Figure 1-6: Splash window

LARP super user keys may be ordered via Internet, by fax or by mail:

· You may order a super user key by credit card through LARP's secured web site.

1. Introduction LARP Users Guide

26 Copyright © 2004-2008 Marco Lavoie

· For those who are reluctant to provide credit card information over Internet, the
information may be transmitted by fax (see LARP's web site).

· Orders may also be paid by check or money order. See LARP's web site for more
information.

Super user keys are shipped by courier upon clearance of the financial transaction.

1.5 LARP updates
This section of the guide is relevant exclusively to the shareware version of LARP.

The shareware version of LARP includes an integrated updating system activated explicitly
through the top menu or implicitly at each startup of the shareware. Periodically updating a LARP
installation ensures the shareware operates adequately, most recently discovered bugs are
eradicated and new functionalities are available. The integrated updating system is exclusively
available when LARP in shareware version is registered.

When the updating system is activated, LARP connects to an updates distribution Web server to
determine whether new updates are available. If so, the latest updates are automatically
downloaded and installed on the computer (Figure 1-7); then LARP shuts down and restarts for
the updates to be activated.

Figure 1-7: Downloading and installing updates

Downloading LARP updates may occasionally fail for various reasons, in which cases their
installation is interrupted and an appropriate error message is displayed. The possible error
messages are:

· Download and installation of updates cancelled by u ser : the user intentionally
interrupted the download of updates by pressing the Cancel button.

· Internet connexion lost : the Internet link has been severed, voluntarily or not.

· Web server holding updates is unreachable : the Web server distributing LARP
updates is currently unavailable. In these circumstances updates should be downloaded
at a later time. LARP’s technical support should also be informed.

· Updates directory currently unavailable : the Web server distributing LARP updates is
not functioning properly. Please inform LARP’s technical support.

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 27

· Access to updates currently suspended : the configuration of the Web server
distributing LARP updates may be corrupted. Please inform LARP’s technical support.

· Some updates files are missing on Web server : the configuration of the Web server
distributing LARP updates may be corrupted. Please inform LARP’s technical support.

It is highly recommended to activate automatic search for new updates upon starting LARP. This
option must be enabled through LARP’s general configuration, which is exclusively available in
the shareware version of the application. When automatic updates are enabled and the computer
is connected to Internet, LARP silently checks for new updates on starting up and informs the
user when such updates are available for download.

1.6 Technical support

In order to alleviate the use of LARP, various sources of help are available to the user:

· LARP 's online help gives a detailed picture the software's development environment as
well as its pseudo code syntax and flowchart instructions.

· Hint help corresponding to interface elements at the mouse cursor location is displayed in
the status panel, at the bottom of the development environment.

· LARP's automated bug report system allows the user to report all bugs encountered
while using the software.

· LARP's Web site is an excellent source of information on LARP. The latest version of the
software is distributed through this site.

If you do not find answers to your questions in these sources of information, you can contact
LARP's technical support via electronic mail at larp@marcolavoie.ca. While LARP's technical
support makes all attempts to answer requests related to the use of the software, no promises
are made to answer questions or requests related to the logic or the debugging of algorithms
formulated with LARP.

1.6.1 Online help

LARP 's online help is accessible at all times by pressing the keyboard's F1 key or through the
top menu, under item Help . Online documentation includes:

· A detailed description of LARP's development environment,

· A description of LARP's pseudo code syntax and flowchart instructions, and

· More information on each of LARP's warning and error messages.

Numerous pseudo code and flowchart examples illustrating the characteristics of LARP's pseudo
code syntax are thoroughly described. Various notions of structured programming are also
introduced in pedagogic form.

Online documentation is formatted in standard format Microsoft® HTML Help. Most windows in
LARP's development environment provide a direct access to appropriate help texts via a Help
button or by pressing the F1 key on the keyboard.

1. Introduction LARP Users Guide

28 Copyright © 2004-2008 Marco Lavoie

1.6.2 Bug reports

In spite of all the attention of LARP ‘s author to provide you with robust and bug free software,
programming errors or omissions are sometimes overlooked. It is probably the case with LARP,
unfortunately.

When a bug is encountered in LARP while editing algorithms or during their execution, in most
cases an error message is displayed on screen to inform the user (see Figure 1-8).

Figure 1-8: Error messages

In some circumstances LARP may also show more detailed error messages, such as:

Figure 1-9: Application error

The Application Error window (Figure 1-9) displays diagnosis information on the encountered
bug.

When such error occurs, technical support should be informed of the problem so that it gets
corrected in the next release of the software.

LARP has an automated report system allowing the user to send bug diagnosis information to
technical support by electronic mail. This bug report system is accessible via the top menu, under
the Help item. Its characteristics are:

· A logging system records in a file all error messages displayed by LARP.

· If a project file is loaded in LARP when a bug is encountered, a copy of the project file is
automatically secured for dispatch to LARP's technical support.

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 29

· If the computer is equipped with an of electronic mail agent (for instance, Microsoft®
Outlook®), an email can automatically be sent to LARP's technical support team.

Figure 1-10: Bug report form

The bug reporting system consists of a sequence of windows gathering detailed information on
the events and data having led to the encountered bug:

1. The first window allows the user to identify himself and to describe circumstances having
led to the bug (see Figure 1-10).

2. The next window (Figure 1-11) enumerates files to be transmitted to LARP's technical
support along with the bug report. These files will help isolate the location and causes of
the reported bug. User authorization is required for each file to be dispatched.

3. The third window (Figure 1-12) requests authorization to transmit the bug report with its
attached files. Upon pressing the Transmit button, LARP transmits the report through the
computer’s default electronic mail agent.

3.1. If the electronic mail agent fails to send the report, the user may transmit it
manually using another electronic mail agent.

Transmitting bug reports to LARP's technical support team allows to correct software errors so
the next version of the software will be more robust.

1. Introduction LARP Users Guide

30 Copyright © 2004-2008 Marco Lavoie

Figure 1-11: Bug report files

1.6.3 LARP's Web site

Please consult LARP's Web site (larp.marcolavoie.ca) to get additional information on the
software. There you will find:

· The most recent version LARP.

· A list of reported bugs and their status.

· A list of frequently asked questions received by LARP's technical support, and the
corresponding answers.

· Project file samples highlighting the various functionalities of LARP pseudo code syntax
and flowchart instructions.

If you do not find answers to your questions in LARP's Web site, contact technical support by
electronic mail at larp@marcolavoie.ca. Sorry, no phone support.

LARP Users Guide 1. Introduction

Copyright © 2004-2008 Marco Lavoie 31

Figure 1-12: Bug report transmission

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 33

2 Development environment
LARP's development environment provides a graphical interface adhering to Microsoft®
Windows® standards. Users familiar with traditional development environments such as
Microsoft® Development Studio® and Borland® Delphi will feel at ease using LARP's interface
elements. Reciprocally, new programmers using LARP will acquire the basic skills to program
with more sophisticated development tools.

LARP's development environment consists of several interface elements including the application
desktop, the execution console , the step execution window and online help.

2.1 Help available in LARP

LARP's online help consists of document files installed on the computer along with the software.
It can be invoked in several ways:

· Pressing the keyboard's F1 key at all times displays help information related to the
current context.

· Invoking online help through the top menu or contextual menus.

· Pressing the Help button on one of the software's windows brings up supplemental
information related to that window.

· When an error message with a reference number is selected in the message panel,
pressing the Ctrl+F1 key combination brings up help information related to the selected
error.

· Pressing the control panel's help button () brings up contextual help (it is equivalent
to pressing Ctrl+F1 if an error message is selected, F1 otherwise).

· Hint help corresponding to interface elements at the mouse location is displayed
continuously in the status panel.

· During the installation process, a link to LARP's online help is created in the
Programs » LARP folder, accessible through Windows®'s Start menu.

The software’s Users Guide is also available, published in Acrobat® PDF format. This guide is the
printable equivalent of LARP's online help.

2.2 Interface elements

LARP 's application desktop (Figure 2-1) is the core of its development environment. It consists of
several interface elements:

· The top menu gives access to all of the development environment functionalities.

2. Development environment LARP Users Guide

34 Copyright © 2004-2008 Marco Lavoie

Figure 2-1: Application desktop

· The control panel regroups interface elements (mostly buttons) providing direct access to
various commands from the top menu. These buttons invoke functionalities most often
used when programming algorithms.

· The editors constitute the predominant panel in the application desktop. It allows the
programmer to formulate and edit algorithms. LARP offers two editors: the textual editor
allows to edit pseudo code modules and input/output buffers, and the graphical editor
allows to edit flowchart modules.

· The message panel, located below the editors, displays various messages generated by
LARP while compiling and executing algorithms (information, warnings and error
messages). The message panel can be optionally deactivated through a top menu
command.

· The document browser, on left, lists all modules and input/output buffers defined with the
LARP project. Users can edit a project document by clicking on its name with the mouse.
The document browser can be optionally deactivated through a top menu command.

· The template panel allows the user to insert instructions into project modules by drag and
drop. The instructions available in the template panel depends on the type of project
module being edited: pseudo code instructions are listed when pseudo code modules are
edited, while flowchart instructions are listed when flowchart modules are edited.

· The status panel, located at the bottom of the development environment, shows
information on LARP 's current state of operations: the position of the cursor within the

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 35

active editor, the current insert mode, the current username (only for the shareware
version of LARP with plagiarism prevention functionalities activated) and help hints.

2.2.1 Top menu

The top menu in LARP 's development environment is located at the top of the application
desktop (see Figure 2-1). It lists all the commands available in LARP (not to be confused with
pseudo code instructions).

Table 2-1 briefly describes all commands accessible through the top menu. Some of the
command can alternatively be invoked through an accelerator key (combination of keyboard
keys) and/or by pressing a button (I.E. for Interface Element) in the control panel. Commands
marked with symbol § in the table have restricted access according to the LARP version and/or
whether or not super user mode is activated.

Command Accel. I.E. Description

File Commands relating to project files.

New... Ctrl+N

Create a new project or document.

Open... Ctrl+O

Open a project file.

Reopen Alt+O Reopen a project file opened previously.

Close project

Close the current project file.

Save Ctrl+S

Save the current project in its file.

Save as... Save the current project in a selected file.

Print... (§) Ctrl+P

Print the current module or project.

This command is not available in the shareware
version of LARP when plagiarism prevention
functionalities are activated but super user mode is
not.

Exit Alt+F4 Close the application.

Edit Commands relating to document editing.

Undo Ctrl+Z

Cancel the last action.

Cut Ctrl+X

Cut the selection and put it on the Clipboard.

Copy Ctrl+C

Copy the selection on the Clipboard.

Paste Ctrl+V

Insert the Clipboard contents at cursor position.

Clear Del Erase the selection.

Clear all Ctrl+Del Erase whole I/O buffer content.

Select all Ctrl+A Select whole document content.

Content… Edit content of selected flowchart instruction.

2. Development environment LARP Users Guide

36 Copyright © 2004-2008 Marco Lavoie

Command Accel. I.E. Description

Augment indent

Augment indentation of the selection or the line at
cursor in the textual editor.

Reduce indent

Reduce indentation of the selection or the line at
cursor in the textual editor.

Search... Ctrl+F

Find the specified text.

Search next F3

Repeat the last find.

Replace... Ctrl+H Replace specified text with different text.

View Commands relating to the display of development
interface panels.

Document Select a project document to edit.

Lateral panel Activate/deactivate display of document browser and
template panel (at left of editor panel).

Messages Activate/deactivate display of message panel (below
the editor).

Console F5

Bring to front execution console when active.

Zoom in

Augment the graphical editor’s scaling factor for
displaying flowcharts.

Zoom out

Reduce the graphical editor’s scaling factor for
displaying flowcharts.

No zoom Show flowcharts at their normal size in the graphical
editor.

Pseudo code… (§) Display as pseudo code the flowchart module in the
graphical editor.

This command is not available in the shareware
version of LARP when plagiarism prevention
functionalities are activated but super user mode is
not.

Execute Commands relating to running projects.

Compile... Ctrl+F7

Compile current project without executing it.

Execute... F7

Compile and run current project.

Execute step-by-
step…

Shift+F7

Compile and run current project in step mode.

Terminate
execution…

 Terminate step execution of the project.

Execute one step F6 Execute next instruction in step mode.

Animate step Ctrl+F6 Animate the execution of the next instruction in step
mode.

Walk execution Activate step execution in walk mode.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 37

Command Accel. I.E. Description

Continue execution Activate step execution in continuous mode.

Pause step execution Shift+F6 Temporarily pause step execution of the project.

Activate/Deactivate
break point

F8 Activate a new break point or deactivate the one at
cursor position.

Project Commands relating to project management.

New Commands to create a new project.

Pseudo code… Create a new project using pseudo code in the main
module.

Flowchart… Create a new project using flowchart in the main
module.

Close Close current project.

Statistics... (§) F9 Display statistics on current project.

This command is not available in the shareware
version of LARP when plagiarism prevention
functionalities are activated but super user mode is
not.

Modules Commands relating to module management.

New Commands relating to creating new auxiliary modules
in current project.

 Pseudo code… Create a new auxiliary module using pseudo code.

 Flowchart… Create a new auxiliary module using flowchart.

Rename... Change the name of module currently edited.

Delete... Delete the currently edited auxiliary module from
project.

Import… (§) Import text file content into the currently edited
pseudo code module.

This command is not available in the shareware
version of LARP when plagiarism prevention
functionalities are activated but super user mode is
not.

Export… (§) Export content of currently edited pseudo code
module into a text file.

This command is not available in the shareware
version of LARP when plagiarism prevention
functionalities are activated but super user mode is
not.

I/O buffers Commands relating to I/O buffer management.

New... Create a new I/O buffer in current project.

Rename... Change the name of I/O buffer currently edited.

Delete... Delete the currently edited I/O buffer from project.

2. Development environment LARP Users Guide

38 Copyright © 2004-2008 Marco Lavoie

Command Accel. I.E. Description

Import… Import text file content into the currently edited I/O
buffer.

Export… Export content of currently edited I/O buffer into a text
file.

Options Commands relating to the configuration of LARP.

General... Display and modify the general configurations.

Colors... Display and modify the color configurations.

Registration... (§) Registering your LARP distribution .

This command is accessible only in the shareware
version of LARP.

Get updates… (§) Download and install latest software updates.

This command is accessible only in the shareware
version of LARP.

Identification... (§) Change active username.

This command is accessible only in the shareware
version of LARP when plagiarism prevention
functionalities are activated.

Help Commands relating to online help.

Contextual help... F1

Display LARP's online help according to context.

Contents... Shift+F1 Display index of LARP's online help.

Error... Ctrl+F1 Display help information on error message currently
selected in message panel.

Report a bug... Report a bug by email.

About... Display information on the installed version of LARP.

Table 2-1: Commands accessible via the top menu

2.2.2 Control panel

The control panel (Table 2-2) in LARP groups interface elements (predominantly buttons) giving a
quick access to some of the top menu's most often invoked commands:

Figure 2-2: Control panel

Accessibility of control panel elements is established according to the current context. For
instance, the Cut button is enabled only when a block of text is selected in the textual editor or a
flowchart instruction selected in the graphical editor.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 39

Table 2-2 describes the interface elements (I.E.) available in the control panel:

I.E. Commande Description

File » New... Create a new project or document.

File » Open... Open a project file.

File » Close project Close the current project file.

File » Save Save the current project in its file.

File » Print... Print the current module or project.

This command is not available in the shareware version of
LARP when plagiarism prevention functionalities are activated
but super user mode is not.

Edit » Undo Cancel the last action.

Edit » Cut Cut the selection and put it on the Clipboard.

Edit » Copy Copy the selection on the Clipboard.

Edit » Paste Insert the Clipboard contents at cursor position.

Edit » Augment indent Augment indentation of the selection or the line at cursor in

the textual editor.

Edit » Reduce indent Reduce indentation of the selection or the line at cursor in the

textual editor.

View » Zoom in Augment the graphical editor’s scaling factor for displaying

flowcharts.

View » Zoom out Reduce the graphical editor’s scaling factor for displaying

flowcharts.

Edit » Search... Find the specified text.

Edit » Search next Repeat the last find.

View » Console Bring to front execution console when active.

Execute » Compile... Compile current project without executing it.

Execute » Execute... Compile and run current project.

Execute » Execute
step-by-step...

Compile and run current project in step mode.

2. Development environment LARP Users Guide

40 Copyright © 2004-2008 Marco Lavoie

I.E. Commande Description

Help » Contextual
help...

Display LARP's online documentation according to context:

· If a message with reference number is selected in the
message panel, online help related to the message is
displayed;

· If a module instruction is selected in the editor, online
help related to that instruction is displayed;

· Otherwise, online help's table of contents is
displayed.

Select the document to edit.

Table 2-2: Interface elements in control panel

2.2.3 Document browser

The document browser (Figure 2-3), located on the upper left side of the application desktop,
enumerates the documents (modules and input/output buffers) contained in the project:

Figure 2-3: Document browser

The name of the document currently being edited is highlighted. An icon along each document
name indicates document type: a blue page (for example MAIN in Figure 2-3) indicates a pseudo
code module, a yellow diagram (PADDING in Figure 2-3) indicates a flowchart module and a
white page (REGISTER in Figure 2-3) indicates an input/output buffer. A document may be edited
by mouse clicking on the document's name in the browser.

The browser provides a contextual menu (accessible with a right mouse button click on the
browser) with commands to add new documents to the project, and to rename or remove existing
documents.

The document browser can be optionally hidden through the menus.

2.2.4 Template panel

The template panel, located in the lower left side of the application desktop, offers various
algorithm instruction templates. The proposed templates varies according to the type of module
being edited: pseudo code instruction templates (Figure 2-4) are displayed in the panel when a
pseudo-code module is being edited, while flowchart instruction templates (Figure 2-5) are
displayed in the panel when a flowchart module is edited. The template panel is blank when an
input/output buffer is displayed in the editor.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 41

Figure 2-4: Pseudo code templates

Figure 2-5: Flowchart templates

Algorithm instructions may be inserted into modules by drag and drop operations from the
template panel to the editors. These operations essentially consist in selecting an instruction from
the template panel and dragging it to an appropriate location into the module displayed in the
editor. For mode information on these operations, see sections Textual editor functionalities and
Graphical editor functionalities.

2.2.5 Editors

LARP’s development environment includes two editors for editing project documents: the textual
editor edits pseudo code modules and input/output buffers, while the graphical editor edits
flowchart modules. These editors can open, edit and save documents listed in document browser.

LARP's textual editor (Figure 2-6) provides functionalities usually found in the most conventional
text editors. Among these functionalities are cutting and copying text to the clipboard, and pasting
text back from it, highlighting pseudo code keywords, importing and exporting text and displaying
line numbers in the margin with caret coordinates in the status panel.

2. Development environment LARP Users Guide

42 Copyright © 2004-2008 Marco Lavoie

Figure 2-6: LARP's textual editor

LARP's graphical editor (Figure 2-7) uses drag and drop along with the template panel to build
and modify flowcharts. Among these functionalities are cutting, copying and pasting flowchart
instructions to and from the clipboard, inserting, moving, flipping and deleting flowchart
instructions, and editing these instructions.

Figure 2-7: LARP's graphical editor

Both editors offer an intuitive interface and commons functionalities, among which search and
replace, undo operations, printing documents, automated security backups of project files and
highlighting instructions in step execution modes.

The accessibility to some functionalities of both editors is restricted according to the version of
LARP used and/or whether or not the super user mode is activated. For more information see the
following sections: textual editor functionalities and graphical editor functionalities.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 43

2.2.6 Message panel

The message panel (Figure 2-8), located below the editors, displays various messages
(information, warnings and mistakes) generated by LARP when compiling and executing
algorithms:

Figure 2-8: Message panel

Information and warning messages are usually displayed in black (depending on current
Windows® configuration), while error messages are displayed in red. Clicking on a warning or an
error message within the message panel resets editors to the corresponding erroneous algorithm
instruction:

· when the error is located in a pseudo code module, the textual editor’s caret is relocated
to the corresponding pseudo code instruction in error;

· when the error is located in a flowchart module, the flowchart instruction in error is
selected within the graphical editor.

The message panel provides a contextual menu (accessible with a right button mouse click on
the panel) with commands to clear the panel’s content or to hide the whole panel. The hidden
message panel can displayed through the top menu. The contextual menu also offers a
command to access online help in order to get more information on selected messages.

See section Compilation and execution for more information on warning and error messages.

2.2.7 Status panel

The status panel (Figure 2-9) at the bottom of the development environment displays various
status information on LARP:

Figure 2-9: Status panel

The following status fields are displayed (from left to right):

1. The content of the first field depends on the active editor: it displays the position of the
caret within the textual editor (in row:column format), or the ID of the selected
instruction in the graphical editor.

2. The active insert mode or the zoom factor : indicates whether the text editor's insertion
mode of activated (Ins) or not, or indicates the graphical editor’s zoom factor (in %).

3. Active username : displays the username specified by the user, or SU (in red) if super
user mode is enabled. This field is only displayed in the shareware version of LARP when
plagiarism prevention functionalities are activated.

4. Hint help : displays short contextual help information on the interface element at mouse
location.

2. Development environment LARP Users Guide

44 Copyright © 2004-2008 Marco Lavoie

2.2.8 Execution console

When LARP runs an algorithm, read and write operations are mostly performed via the execution
console (Figure 2-10).

Figure 2-10: Execution console

The execution console is a window automatically displayed upon starting the execution of an
algorithm. The console allows the user to interact with the running algorithm, providing inputs to
READ instructions and displaying information according to WRITE instructions (REQUEST
instructions also interacts through the console).

Once the execution of the algorithm terminates, the user may close the console by pressing any
keyboard key. The console can also be closed at all times by clicking the button on the
window's caption, or by interrupting step-by-step execution of the algorithm. If an algorithm is
running while an attempt is made to close the console, the user is asked for confirmation prior to
interrupting execution and closing the console. A status panel located on top of the console
indicates the state of the algorithm's execution (In execution… , Paused… or Finished).

The development environment cannot manage more than one execution console at a time. An
opened console must therefore be closed before the algorithm can be run again.

The scrollbars to the right and bottom of the console allow panning through the console’s content.
By default, the console displays 25 lines of 80 characters, but its retains up to the last 200 lines of
input/output operations. As any common window, the console window can be resized with the
mouse.

By default, the console’s background is black and outputs are displayed in white. Output colors
are configurable (see section Colors in the execution console).

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 45

2.2.9 Step execution window

When step execution of the algorithm is initiated, the step execution window (Figure 2-11) is
automatically displayed along with the execution console:

Figure 2-11: Step execution window

The step execution window provides various functionalities for controlling the execution of the
algorithm, among which:

· Single step execution: the algorithm’s instructions may be executed one at a time with
pauses in between in order to inspect variable values and their evolution during
execution.

· Variables inspection: in between the execution of the algorithm’s instructions, variable
values may be watched. Container elements may also be inspected individually.

· Call stack status inspection: the execution stack contains the calls of all modules
originating from the main module that have led to the instruction currently being
executed. The step execution window continuously displays module names in the call
stack.

· Break points management: break points flag algorithm instructions where execution must
be paused when executing in step mode. The step execution window allows managing all
active break points in the algorithm’s modules.

· Instructions animation: the step execution window may animate the execution of
individual instructions within the algorithm. Animation allows viewing how and in which
order instruction elements are executed by LARP.

Step execution functionalities are described in more details in section 2.5.2.

2. Development environment LARP Users Guide

46 Copyright © 2004-2008 Marco Lavoie

2.3 Textual editor functionalities

LARP 's development environment includes a text editor for creating and editing textual project
documents (i.e. pseudo code modules and input/output buffers). The editor can open, edit and
save the documents listed in document browser. It offers many functions commonly found in
conventional text editors, including cut and paste, syntax highlighting and automatic indentation.

2.3.1 Editing a textual document

To edit a pseudo code module or an input/output buffer within a project currently loaded in LARP,
the user may choose the targeted document from the document browser or via the control panel.
The content of the selected document is then loaded into the editor. In fact LARP's textual editor
is automatically activated when the document selected for editing is a pseudo code module or an
input/output buffer.

The editor panel consists of two sections:

· a lateral margin, on left, display line numbers, bookmarks and step execution markers;

· the main section, on right, displays the contents of a selected document for editing.

Figure 2-12: Textual editor panel

The background color for the editing section (on right) depends on the type of document edited: a
green background (by default, modifiable via Color selection) indicates a module containing
pseudo code, while a white background (by default, also modifiable via color selection) indicates
an input/output buffer containing data. When the edited document is a module, syntax highlighting
of LARP pseudo code keywords is automatically activated.

Editor commands are accessible through the top menu, through the editor's contextual menu
(accessible by clicking on the edit panel with the right mouse button), through buttons on control
panel, through the keyboard, and/or through the mouse.

Access to some commands is restricted to super user mode in the shareware version of LARP,
such as clipboard management and document printing. These commands are disabled for non
super users.

2.3.2 Search and replace

LARP’s textual editor offers text search and replace functionalities. The Search window (Figure
2-13) searches for a sequence of characters in the current document or throughout all documents

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 47

in the project. The Replace window (Figure 2-14) provides the additional functionality of replacing
the located text with an alternate sequence of characters.

Figure 2-13: Search window

Both windows provide dropped down lists to recall previous searches.

Figure 2-14: Replace window

Search and replace functionalities in LARP are also applicable to flowcharts.

2.3.3 Syntax highlight

When a module is displayed in the textual editor, elements of its pseudo code are displayed in
distinct colors according to their significance. By default, these colors are:

· Reserved keywords of pseudo code are displayed in black bold characters.

· Predefined function names are displayed in navy bold characters.

· Comments are displayed in magenta italics characters.

· Character strings are displayed in " red " characters.

Other elements of pseudo code are displayed in black characters.

Furthermore, the following pseudo code instructions are highlighted during step execution :

· The next line to be executed in single step mode.

· Lines to which are attached break points.

The choice of highlight colors is configurable via Color selection.

2. Development environment LARP Users Guide

48 Copyright © 2004-2008 Marco Lavoie

2.3.4 Textual editor configuration

The following characteristics of the textual editor are configurable:

· Editing functions, and

· Colors for displaying pseudo code.

For more information on configuration of the editor, consult the corresponding sections
(Configuration of editors and Colors in the editors).

2.3.5 Textual editor's edit commands

Commands for editing documents are accessible via:

· the top menu,

· the editor's contextual menu (accessible by clicking on the edit panel with the right mouse
button),

· buttons in the control panel,

· the keyboard, and/or

· the mouse.

2.3.5.1 Textual editor commands accessible through menus

There are two types of menus in LARP:

1. the top menu, displayed at the top of the development environment, and

2. contextual menus, linked to various interface elements of the development environment
and accessible with a click of the mouse's right button on the targeted element.

The textual editor responds to commands accessible through the top menu (see Top menu
section for a list of these commands) as well as through its contextual menu. Accessibility of
these commands depends on the type document being edited:

· When editing a pseudo code module, the editor's contextual menu lists commands
related to clipboard management and text search.

· When editing an input/output buffer (i.e. data), the editor's contextual menu lists
commands related to clipboard management and text search, along with commands for
importing and exporting data.

For further description of menu commands, consult the related sections (Top menu and Control
panel).

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 49

2.3.5.2 Textual editor commands accessible through the keyboard

Along with commands accessible through menus, LARP 's textual editor responds to commands
exclusively invoked through the keyboard:

Keys Description

<End> Move the caret at the end of the current line.

<Home> Move the caret at the beginning of the current line.

<Enter> Insert a new line at current caret position.

<Ins> Activate and deactivate insertion mode.

 Delete a character to the right of the caret.

<Backspace> Delete a character to the left of the caret.

<Tab> Insert a tabulation (contextual or conventional) to the
right of the caret.

<Left> Move the caret to the previous character.

<Right> Move the caret to the next character.

<Up> Move the caret to the previous line.

<Down> Move the caret to the next line.

<Page Up> Move the caret upwards a number of lines
corresponding to the height of the edit panel.

<Page Down> Move the caret downwards a number of lines
corresponding to the height of the edit panel.

<Ctrl>+<Up> Move the caret to the beginning of the document.

<Ctrl>+<End> Move the caret to the end of the document.

<Shift>+<Left>|<Right>|<Up>|<Down> Choose a block of text.

<Alt>+<Left>|<Right>|<Up>|<Down> Choose a rectangular block of text.

<Ctrl>+<Shift>+0...9 Activate and deactivate a bookmark (bookmarks are
numbered from 0 to 9) .

<Ctrl>+0...9 Move the caret to the corresponding bookmark.

Table 2-3: Keyboard commands for the textual editor

Along with the commands listed above, the editor also responds to top menu commands invoked
through their accelerator key.

2.3.5.3 Mouse control in the textual editor

LARP's textual editor responds in standard ways to various mouse actions:

· A click of the left mouse button moves the caret to the mouse location in the edited
document.

· A click of the right mouse button displays the editor's contextual menu at the mouse
location.

· Pressing the left mouse button and dragging the cursor over text selects a block of text.

2. Development environment LARP Users Guide

50 Copyright © 2004-2008 Marco Lavoie

· Pressing the left mouse button over a block of selected text and dragging the mouse
moves the selected block of text in the document along with the mouse.

Furthermore, the mouse may be used along with the template panel to insert pseudo code
instructions into the edited module by drag and drop operations. To do so, a template must be
selected with the mouse in the template panel, dragged over the textual editor and dropped at the
appropriate line in the pseudo-code module. The inserted instruction may afterward be
customized to the needs of the algorithm.

2.4 Graphical editor functionalities

To edit a flowchart module within a project currently loaded in LARP, the user may choose the
targeted document from the document browser or via the control panel. The content of the
selected document is then loaded into the graphical editor. LARP's graphical editor is
automatically activated when the document selected for editing is a flowchart module.

Figure 2-15: Graphical editor panel

The graphical editor allows building and editing flowcharts by drag and drop using the mouse
along with the template panel. Among functionalities available in the graphical editor are copy, cut
and paste operations with the clipboard, insert, move, flip orientation, transform and delete
flowchart instructions, and edit flowchart instructions.

2.4.1 Flowchart instructions

The template panel lists all flowchart instructions available in LARP:

Instructions Descriptions

Sequential instruction: allows formulating sequential instructions such as
assignments as well as opening and closing input/output channels, etc.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 51

Instructions Descriptions

Input/output instruction: allows formulating input/output instructions to the
console, input/output buffer or files.

Auxiliary module call: invoke an auxiliary module (pseudo code or
flowchart) during execution.

Comment: insert non executable informations in the flowchart.

IF conditional structure: a sequence of instructions to be executed or not
according to the value of a given condition.

IF-ELSE conditional structure: two sequences of instructions, one of which
is to be executed according to the value of a given condition.

WHILE repetitive structure: a sequence of instructions to be executed
repeatedly according to the value of a given condition.

REPEAT-UNTIL repetitive structure: a sequence of instructions to be
executed repeatedly according to the value of a given condition.

FOR repetitive structure: a sequence of instructions to be executed
repeatedly a given number of times.

SELECT structure: conditional structure consisting of one or more
sequences of instructions, one of which is to be executed according to the
value of a given mathematical expression.

IF-ELSE-IF conditional structure: conditional structure consisting of one or
more sequences of instructions, one of which is to be executed according
to the value of a given conditions.

Branching for conditional structures: allows adding alternate sequences
of instructions in SELECT structure and IF-ELSE-IF conditional structure.

Table 2-4: Flowchart instructions

Many instructions offer a choice of orientation (such as conditional structures). The orientation of
such instructions is purely esthetical and of no significance in the execution of the algorithm.

2.4.2 Editing a flowchart

To edit a flowchart module within a project currently loaded in LARP, the user may choose the
targeted document from the document browser or through the control panel. The selected

2. Development environment LARP Users Guide

52 Copyright © 2004-2008 Marco Lavoie

document’s content is then loaded into the graphical editor. LARP's graphical editor is
automatically activated when the document selected for editing is a flowchart module. When the
selected document contains text (i.e. a pseudo code module or an input/output buffer), the textual
editor is activated.

When a new flowchart module is created (through the top menu or the document browser), a
minimal flowchart is automatically generated by LARP:

· If the new flowchart is the project's main module, START and END instructions are
inserted in the flowchart.

· If the new flowchart is an auxiliary module, ENTER and RETURN instructions are
inserted in the flowchart.

Figure 2-16: New main module

Figure 2-17: New auxiliary module

The graphical editor displays an insertion node on each line linking flowchart instructions. These
nodes allow inserting new instructions in the flowchart through contextual menus or by drag and
drop using the mouse and instruction templates in the template panel.

2.4.3 Manipulating flowchart instructions

LARP’s graphical editor panel is a drawing canvas where flowchart instructions may be
manipulated (see Figure 2-15). Each line linking adjacent instructions displays an insertion node
(a small gray circle) for inserting new flowchart instructions by drag and drop or through
contextual menus.

Figure 2-18: Selected insertion node

Figure 2-19: Selected flowchart instruction

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 53

Flowchart instructions and insertion nodes may be selected by clicking on the corresponding
graphical component with the mouse or by browsing through them using keyboard arrow keys.
The current selection is highlighted with a dashed rectangle surrounding the instruction or the
node (see Figure 2-18 and Figure 2-19).

A selected instruction may be edited, deleted or moved to an insertion node. On the other hand, a
selected insertion node may only receive flowchart instructions by drag and drop or through its
contextual menu. It may not be moved nor deleted.

2.4.3.1 Inserting, moving and deleting flowchart in structions

New instructions may be inserted into the edited flowchart through insertion nodes:

· through the contextual menu displayed when clicking on the selected node with the right
mouse button or with the proper keyboard key (see Figure 2-20);

· by drag and drop, using the mouse to drag instruction templates from the template panel
and dropping them on targeted nodes.

When an instruction template is dragged from the template panel onto an insertion node, the
receiving node's color indicates whether it can accept the instruction or not: a red node indicates
it's logically unsound to insert the dragged instruction at this location in the flowchart, while a
green node authorizes the insertion.

Figure 2-20: Inserting a flowchart instruction thro ugh an insertion node's contextual menu

An instruction from the edited flowchart may also be moved to another location within the
flowchart by drag and drop:

1. Select the flowchart instruction to be moved by clicking on it with the left mouse button.

2. Drag the selected instruction onto the targeted insertion node.

2. Development environment LARP Users Guide

54 Copyright © 2004-2008 Marco Lavoie

3. Drop the dragged instruction onto the node by releasing the mouse button.

The target node's color indicates whether it can accept the instruction or not: a red node indicates
it's logically unsound to move the instruction there, while a green node authorizes the insertion. If
the dragged instruction is not dropped on a node, the move is cancelled.

Instructions may also be moved within the flowchart using cut and paste. These commands are
accessible through the keyboard or the contextual menus. Note however that access to cut, copy
and paste commands is restricted when super user mode is not activated in the shareware
version of LARP.

Selected flowchart instructions may be deleted through the top menu, through the selection's
contextual menu or by pressing the Del key on the keyboard.

2.4.3.2 Editing flowchart instructions

The selected flowchart instruction’s attributes may be modified by double clicking on the selected
instruction in the graphical editor or through its contextual menu (accessed by clicking on the
selection with the right mouse button). The flowchart instruction editing window (Figure 2-21)
displays flowchart instruction attributes and allows modifying each attribute.

Figure 2-21: Editing a flowchart instruction

Attributes associated with a flowchart instruction depend on the type of instruction. While some
instructions are relatively simple (for example sequential operations and comments), others
(conditional and iterative structures) include more complex attributes such as orientation of
branches, as for the IF-ELSE conditional structure of Figure 2-21.

LARP’s menus also provide access to major attribute modification commands, such as:

· orientation flipping, which flips the direction of instruction branches in conditional and
iterative structures, and/or

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 55

· transformation, which allows to transform an instruction to a sibling instruction type (for
example, a WHILE loop may be transformed into a REPEAT-UNTIL loop).

Flowchart instruction editing in LARP’s graphical editor is relatively straightforward and intuitive.

2.4.4 Search and replace in a flowchart

Search and replace functionalities in LARP are available in its graphical editor as well as in its
textual editor.

All occurrences of the searched text are highlighted in a flowchart instruction. Likewise, a replace
operation updates at once all occurrences of the searched text in a flowchart instruction with the
replaced text.

For more information on LARP's search and replace functionalities, see the corresponding
section for the textual editor.

2.4.5 Zooming the display

The textual editor allows rescaling the display of flowcharts. The zoom factor resizes the
displayed flowchart from 25% to 200% of its normal size. Such rescaling permits viewing a large
flowchart entirely or zooming in on a small section of it.

The graphical editor’s zoom factor is set through the top menu or through the graphical editor’s
commands. The current zoom factor is continuously displayed in the status panel.

2.4.6 Instructions highlighting in step execution

When executing a project step by step, LARP’s graphical editor highlights the next instruction to
be executed (left figure below) as well as active break points (right figure below):

Figure 2-22: Next instruction to be executed

Figure 2-23: Highlighted break point

Highlight colors in the graphical editor are configurable.

2. Development environment LARP Users Guide

56 Copyright © 2004-2008 Marco Lavoie

2.4.7 Graphical editor configuration

Both display colors and text fonts are configurable in LARP's graphical editor. For more
information, consult the section titled Configuration of LARP.

2.4.8 Graphical editor’s edit commands

Edit commands as well as project management commands are accessible through one or more
of the followings:

· the top menu,

· contextual menus,

· the control panel,

· the keyboard, and

· the mouse.

Furthermore, LARP’s graphical editor may be used along with the template panel to build
flowchart modules by drag and drop.

2.4.8.1 Graphical editor commands accessible throug h menus

There are two types of menus in LARP:

1. the top menu, displayed at the top of the development environment, and

2. contextual menus, linked to various interface elements in the development environment
and accessible with a click of the mouse's right button on the targeted element.

The graphical editor responds to commands accessible through the top menu (see the Top menu
section for a list of these commands) as well as through contextual menus associated with
instructions and insertion nodes. These commands include:

· flowchart editing commands such as instruction insertion at nodes (see Figure 2-20),

· instruction manipulation commands such as content editing, orientation flipping and
transformation, and

· clipboard management and text search commands.

For a comprehensive description of menu commands, consult the related sections (Top menu,
Control panel and Editing a flowchart).

2.4.8.2 Graphical editor commands accessible throug h the keyboard

Along with commands accessible through menus, LARP's graphical editor responds to
commands which are exclusively invoked through the keyboard:

Keys Description

<End> Select the last instruction in the flowchart.

<Home> Select the first instruction in the flowchart.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 57

Keys Description

<Enter> Display the contextual menu associated to the selected
instruction or the selected insertion node.

 Delete the selected instruction.

 + Increase the zoom factor.

 - Decrease the zoom factor.

<Left>|<Up> Select the previous instruction or insertion node
according to the current selection and its surroundings
elements.

<Right>|<Down> Select the next instruction or insertion node according
to the current selection and its surroundings elements.

<Shift>+<Left>|<Right>|<Up>|<Down> Same functionalities as <Left> , <Right> , <Up> and
<Down> keys, but attempt to make an alternate
selection.

<Ctrl>+<Left>|<Right>|<Up>|<Down> Similar functionalities as with the <Shift> key.

Table 2-5: Graphical editor commands accessible thr ough the keyboard

Using the <Shift> or <Ctrl> key along with arrow keys (<Left> , <Right> , <Up> or <Down>)
moves the selection to an alternate neighbor instruction or insertion node. Since selecting a
neighbor instruction or node may not result in the selection anticipated by the user, using the
<Shift> or <Ctrl> key provides an alternate change of selection in some circumstances. In short,
if the arrow keys alone do not move the selection to the targeted flowchart component, using the
<Shift> or <Ctrl> key along with arrow keys may yield the desired results.

Along with the commands listed above, the graphical editor also responds to top menu
commands invoked through their accelerator key.

2.4.8.3 Mouse control in the graphical editor

LARP’s graphical editor responds in standard ways to mouse actions:

· A left click on an instruction or an insertion node selects the corresponding flowchart
component.

· A double click on an instruction with the left mouse button edits the instruction (see
Figure 2-21).

· A right click on an instruction or an insertion node displays the contextual menu
associated with the selected flowchart component.

The mouse may also be used along with the template panel to insert new instructions in the
edited flowchart by drag and drop. The insertion is accomplished by selecting an instruction
template from the template panel, dragging it on the graphical editor and dropping it on the
insertion node where the new instruction must be inserted in the flowchart. The content of the
new instruction may then be modified according to needs.

The mouse is also used to move instructions by drag and drop within the flowchart. The
instruction to be moved must first be selected with the mouse, dragged to the insertion node
where it must be moved, and finally dropped on this node. The graphical editor completes the
operation by moving the instruction to its new position within the flowchart.

2. Development environment LARP Users Guide

58 Copyright © 2004-2008 Marco Lavoie

When an instruction (either a new instruction from the template panel or an instruction moved
within the flowchart) is dragged on an insertion node, the node’s color indicates whether it can
accept the instruction or not: a red node indicates that it’s logically impossible to drop the
instruction at that position within the flowchart, while a green node indicates that the instruction
may be inserted there.

2.5 Compilation and execution

Compilation of a LARP project consists of verifying the conformity of its pseudo code and
flowcharts to LARP's syntax rules and, if so, transforming the modules into executable code. If
syntax errors are detected in a module during compilation, appropriate error notifications are
displayed in the message panel and no executable code is produced.

When compiling a project, LARP presents a window indicating the current state of the compilation
process. The compilation state window (Figure 2-24) indicates the name of the project being
compiled as well as compilation results (i.e. if it successfully generated executable code or not).
Indicators point out the total number of warning and error messages produced during compilation
and displayed in the message panel.

Figure 2-24: Compilation state window

When a project has no errors and is successfully compiled, it can be executed via the execution
console.

Compilation and execution commands are accessible through the top menu and the control
panel.

2.5.1 Running a project

When a project is successfully compiled with no syntax error detected, it can be executed through
the execution console. If the user attempts to execute a project which has not been compiled
beforehand, LARP automatically compiles it prior to its execution.

When executing algorithms, input and output instructions are handled through the execution
console. If a logical error is encountered during execution, an appropriate warning or error
message is immediately displayed in the message panel and if the error is fatal execution is
interrupted.

The user can interrupt execution of a LARP project any time by closing the execution console.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 59

2.5.2 Step execution

Step execution allows running an algorithm in a controlled environment. In such context, the user
may momentarily suspend the execution of the algorithm, run it one instruction at a time, follow
the evolution of each variable’s value and animate the execution of some instructions.

Step execution is started through the top menu (Execute » Execute step-by-step). The control
panel also provides a button to activate step execution.

2.5.2.1 Step execution interface

Figure 2-25 presents the step execution window and its various interface elements. This window
is automatically displayed along with the execution console when step execution of the algorithm
is activated (through the top menu’s command Execute » Execute step-by-step or through the
control panel’s corresponding button in the main window of the development environment).

Figure 2-25: Interface elements of the step executi on window

The step execution window’s interface elements are:

1. The control panel : not to be confused with the control panel in the development
environment’s main window, the step execution window’s control panel controls the
execution of an algorithm. Every button in the control panel provides a specific
functionality related to step execution:

Runs the next algorithm instruction (in step mode). The execution is
automatically paused after running the next instruction. See step execution
modes for more information.

Animates the execution of the next algorithm instruction. Animation speed is
controlled using the arrow buttons under the Walk button. For more
information see the section on animation.

Activates walk execution mode. The arrow buttons under the Walk button
controls walk speed. Walk execution may be temporarily paused by pressing
the Pause button. See step execution modes for more information.

2. Development environment LARP Users Guide

60 Copyright © 2004-2008 Marco Lavoie

Activates continuous execution mode. Continuous execution may be
temporarily paused by pressing the Pause button. See step execution modes
for more information.

Temporarily suspends walk or continuous execution. See step execution
modes for more information.

Ends execution of the algorithm. This button closes the step execution
window along with the execution console.

Displays online help on step execution.

Step execution may be stopped at any time by closing the step execution window or by
pressing the control panel’s Terminate button.

2. The status panel : the step execution window’s status panel, not to be confused with the
status panel in the development environment’s main window, displays various information
relating to the execution of the algorithm:

Figure 2-26 : Status panel of the step execution wi ndow

The status panel is divided into three sections:

· The first section identifies the next algorithm instruction to be executed (module
name and instruction line or number).

· The second section indicates step execution and animation speed, in seconds.
Execution and animation speed can be modified through the arrow buttons under
the Walk button in the control panel.

· The third section displays information on the currently selected variable, break
point or call stack entry.

3. The variables inspection panel : lists all variables and parameters defined in the
algorithm module currently being executed, along with their current value. When a
variable is selected in the inspection panel, its value’s type is displayed in the status
panel.

For more information on variables inspection, see section 2.5.2.3.

4. The call stack inspection panel : displays the current call stack content. The call stack
lists all modules currently in execution leading to the last algorithm instruction executed.
The call stack inspection panel lists all modules in the call stack (starting with the main
module), along with their respective parameter values. A module’s complete call is
displayed in the status panel when selected in the inspection panel.

For more information on call stack inspection, see section 2.5.2.4.

5. The animation panel : animates instructions in step execution. When the next instruction
is executed with animation, this panel presents a full motion animation of the evaluation
process involved in executing the instruction.

For more information on istruction animation, see section 2.5.2.6.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 61

6. The break points management panel : lists all break points currently defined in the
algorithm under execution. Break points may be individually deactivated through this
panel.

For more information on break points management, see section 2.5.2.5.

The following sections described in details the various interface elements of the step execution
window.

2.5.2.2 Step execution modes

A project may be executed step by step in three modes:

1. Single step mode : a single algorithm instruction is executed. The user may thereafter
use the step execution window to inspect variables content or the call stack entries.
Animation may be activated during single step execution. The step execution window’s
control panel provides a Single step button which executes the next algorithm
instruction, then pauses. The Animate button also executes the next instruction while
animating that execution.

2. Walking mode : the project is executed in slow motion, a momentary pause inserted in
between each instruction executed. The step execution window’s control panel provides
a Walk button which executes the project in walk mode. The arrow buttons below the
Walk button may be used to accelerate or reduce walk speed. Walk speed is displayed
(in seconds of delay inserted in between instruction execution) int the step execution
window’s status panel.

Execution in walk mode is stopped when the end of the project’s main module is reached
or when a break point is encountered. The Pause button in the control panel allows to
suspend walk mode execution at any time.

3. Continuous mode : continuous mode is similar to walking mode, except no delay is
inserting in between instructions during execution. Execution in continuous mode is
stopped when the end of the project’s main module is reached or when a break point is
reached. The Pause button in the control panel allows to suspend continuous mode
execution at any time.

Note that continuous mode execution through the step execution window is considerably
slower than conventional execution (i.e. without the step execution window), which
ignores encountered break points. Managing break points during step execution and
refreshing the step execution window’s panel requires considerable processing power,
slowing down execution.

When executing a project in single step mode or in walking mode, both the textual editor and the
graphical editor highlight the instruction waiting to execute:

Figure 2-27: Next instruction to execute (step mode) in the textual editor

2. Development environment LARP Users Guide

62 Copyright © 2004-2008 Marco Lavoie

Figure 2-28: Next instruction to execute (step mode) in the graphical editor

2.5.2.3 Variables inspection

The variables inspection panel (Figure 2-29) displays the value contained in each variable
encountered during step executing the current project module.

Figure 2-29: Variables inspection panel

The panel lists all variables encountered in the module up to the last executed instruction. If the
last executed instruction modified a variable’s content, its entry in the panel is displayed in bold
characters.

When a variable is selected within the list, its content’s type is displayed in status panel at the
bottom of the step execution window. When the selected variable is a container, the call stack
inspection panel is temporarily replaced by another panel, titled Container , which allows to
browse through the container’s elements.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 63

Tracking variable values during step execution facilitates identifying and eliminating bugs in a
LARP project.

2.5.2.4 Call stack inspection

The call stack of a LARP project in execution lists all modules currently in execution, from the
main module to the last instruction executed. The call stack inspection panel lists all modules in
the call stack along with their respective parameter values:

Figure 2-30: Call stack inspection panel

In Figure 2-30, instruction 0003 in module ComputeExpenses is next to be executed. That
module was invoked by module MeanExpenses which was invoked in turn by the main module
(PRINCIPAL). The call stack inspection panel displays all parameter values for each call.

A module call is fully displayed in the status panel when selected from the call stack inspection
panel.

2.5.2.5 Break points

The break points inspection panel (Figure 2-31) lists all active break points during step execution
of the current LARP project. A break point is attached to a module instruction and flags to step
execution window to pause walk mode or continuous mode execution at the instruction, allowing
the user to inspect variables and the call stack, change execution mode or activate animation.

The break points inspection panel lists all break points defined in the project and highlights (in red
in Figure 2-31) the break point corresponding the the instruction at which step execution is
currently paused:

2. Development environment LARP Users Guide

64 Copyright © 2004-2008 Marco Lavoie

Figure 2-31: Break points inspection panel

The break points inspection panel’s contextual menu, accessible through a right click of the
mouse on the panel itself, allows to locate a break point in the project and to deactivate break
points.

The development environment’s textual editor and the graphical editor both highlight break points
attached to module instructions:

Figure 2-32: Highlighted break point in the textual editor

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 65

Figure 2-33: Highlighted break point in the graphic al editor

Both editors’ contextual menus as well as the development environment’s top menu provide
access to break point activation and suppression commands.

2.5.2.6 Animation

The step execution window’s animation panel (Figure 2-34) allows to visualize the evaluation
process of algorithmic instructions. Animation aids in understanding how the various components
of an instruction get evaluated, and in which order they get evaluated. The value of animation is
mainly pedagogic: it provides viewers with insight on the consequence on evaluation of operator
priorities when executing instructions involving arithmetic operators, relational operators and
logical operators.

Figure 2-34 presents an example of animating an assignment instruction. The animation
decomposes the evaluation of the mathematical equation on right of the assignment symbol (=)
according to the relative priorities of its arithmetic operations. Here, 2^K (yielding
4.59479341889914) gets evaluated prior to the multiplication, which evaluates to
16.8628918513565 . The add operator then gets evaluated, yielding 37.8628918513565 . This
last value finally gets assigned to variable Z. At each stage of the evaluation process, the
animation panel displays intermediate results obtained from evaluating the various arithmetic
operators involved (for example, evaluating variable X returns 45, which square root gives
6.70820393249937).

Figure 2-35 presents an example in which the condition of a conditional structure (IF statement)
gets evaluated. Decomposing the evaluation process of this condition allows to understand why
its result is affirmative (i.e. the result is TRUE).

2. Development environment LARP Users Guide

66 Copyright © 2004-2008 Marco Lavoie

Figure 2-34: Step exection window's animation panel

To animate the execution of the next instruction in step by step execution, the Animate button
must be pressed instead of the One step button. The animation panel is then automatically
activated and the execution of the next instruction gets animated with pauses inserted in between
the evaluation of each arithmetic, relational and/or logical operator. The animation goes on until
the instruction’s execution is completed. The duration of pauses inserted in between operator
evaluations is the same as pauses inserted in between instructions when step executing a project
in walk mode. The arrow buttons below the Walk button in the step execution window’s control
panel (see section 2.5.2.1) may be used to adjust animation speed (as well as walk execution
speed). The step execution window’s status panel displays the animation speed (duration of each
pause in seconds).

Figure 2-35: Animating the evaluation of a conditio n

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 67

Here are important notes regarding animation:

· Once the animation of an instruction is initiated, it cannot be interrupted until the
instruction gets completely executed.

· Animation speed may be modified at any time (even during animation) through the arrow
buttons under the Walk button.

· Animation is limited to arithmetic, relational and logical operators. The evaluation of other
elements of an instruction usually cannot be animated.

· The animation panel always displays the animated instruction in pseudo code form, even
is the module containing the instruction is in flowchart form.

2.5.3 Security backups

Since technology sometimes fails (more so the programming skills of LARP's author), there may
come a situation in which LARP fatally halts or shuts down without allowing the user to save the
last modifications to the project.

To reduce losses and frustrations due to such errors, LARP periodically (by default, every 10
minutes) makes a backup of the edited project in a temporary file. Furthermore, since the
likelihood of such malfunction increases during the execution of a project, LARP also performs a
backup prior to each execution.

If, as it is generally the case, everything runs smoothly and the user is able to save the project
through normal means (via the top menu or the control panel), security backups of the project are
automatically discarded. If on the other hand LARP crashes before the user successfully saved
his work, security backups are preserved.

At every start up, LARP seeks for the presence of security backups. If one such backup is
located, LARP offers the user to reload it in order to recover the last modifications to the project. If
the user refuses the offer, the backup file is not reloaded in LARP. In any case, security backups
are destroyed afterwards.

2.5.4 Warnings and errors

When compiling or executing of a project, LARP displays various information in the message
panel:

· During compilation: syntax errors encountered in pseudo code and flowchart modules
are identified.

· During execution: logical errors encountered in pseudo code and flowchart modules are
identified.

LARP also displays warning messages on occasions. These messages usually point out
potentially non-fatal errors. Such errors do not usually prevent the project from being executed,
but may yield unpredictable behaviour during execution.

Every warning and error message displayed in the message panel includes the followings:

1. the type of message (warning or error);

2. the position of the anomaly in the project (the module name along with the position of the
erroneous instruction);

2. Development environment LARP Users Guide

68 Copyright © 2004-2008 Marco Lavoie

3. a short description of the anomaly; and

4. in most circumstances, a reference number relating to further information on the error in
LARP's online help.

To locate an erroneous instruction in the project modules, the user can double click on the
corresponding message in the message panel. The appropriate editor (either the textual editor or
the graphical editor, depending on the type of module) displays the module in error and highlights
the faulty instruction. When the message includes a reference number, additional information in
online help is available through the message panel’s contextual menu, accessible when clicking
on the message with the right mouse button.

For more information on warning and error messages, see Appendix E. You can also consult
sections describing the message panel and online help to get information on handling these
messages in LARP.

2.6 Configuration of LARP

The following elements of LARP's development environment are configurable:

· editing functionalities,

· algorithm execution,

· managing the application, and

· display colors.

Current configuration settings are automatically saved in the system's registry upon shutting
down LARP. This configuration is automatically restored when LARP is started up.

Note: It is strongly recommended to avoid altering the configuration of LARP directly through the
registry (with a utility such as regedit). Corruption of the system registry can irremediably
damage the operating system (i.e. WindowsÒ). It is therefore recommended to use LARP's
configuration interface to modify the software’s configuration settings.

2.6.1 General configuration

LARP’s General configuration window (Figure 2-36) allows configuring various elements of its
development environment as well as the execution of algorithms.

This window is accessible through the top menu, under item Options » General… :

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 69

Figure 2-36: General configuration window

Configuration options are organized according to three topics selectable through tabs along the
top:

1. Editors: to configure LARP’s editors.

2. Execution: to configure the execution of algorithms.

3. Management: to configure the super user mode and LARP’s integrated updating system.

2.6.1.1 Configuration of editors

Configuration options under the Editors tab allow modifying editing attributes.

The following attributes apply to both the textual editor and the graphical editor:

· Font: these attributes indicate the character font and size to use in the editors. It is
recommended to use a fixed width font (such as Courier New) in order to facilitate
vertical character alignment in output instructions.

· Size of undo operations buffer: this value corresponds to the size of the buffer where
most recent editing operations are stored. This buffer allows cancelling the most recent
editing operations performed by the user. The specified value indicates the maximum
number of stored operations.

The following attributes apply exclusively to the textual editor:

· Contextual tabulation: when contextual tabulation is activated, the keyboard tabulation
key inserts spaces at the caret position so that the character immediately at right of the
caret is aligned with the next characters on the previous line. Contextual tabulation eases
the alignment of pseudo code instructions on successive lines.

When contextual tabulation is deactivated, the tabulation key inserts a conventional
tabulation at the caret position.

· Syntax highlighting: when syntax highlighting is activated, reserved words and other
syntax elements of pseudo code are displayed with distinct colors in the editor. The
highlighting allows the user to easily identify different elements of a pseudo code.

2. Development environment LARP Users Guide

70 Copyright © 2004-2008 Marco Lavoie

· Left gutter: when the left gutter is activated, a narrow gutter appears to the left of the
textual edit panel. This gutter shows line numbers and bookmarks associated with the
edited document.

· Width of tabulation columns: this value indicates the number of spaces corresponding
to a conventional tabulation (i.e. when contextual tabulation is not active). For instance, if
a value of 4 is specified for this option, pressing the tabulation key inserts blank
characters at the caret in order to move it to the next column multiple of 4 (i.e. 4, 8, 12,
16, 20).

2.6.1.2 Configuration of the execution console

Configuration options under the Execution tab (Figure 2-37) allow configuring parameters driving
the execution of algorithms.

Figure 2-37: Configurating algorithm execution

Configurable parameters include:

· Maximum size of containers: this parameter sets the maximum index a container
element may have (the minimum index is fixed to 1). This limit prevents the creation of
exceedingly large containers, which could cause the system to run out of random access
memory (RAM) and make LARP terminate abnormally. The creation of huge containers is
generally an indication of logical errors in an algorithm.

· Maximum size of call stack: this parameter sets the maximum number of embedded
module calls allowed during the execution of algorithms (module calls are embedded
when one module invokes a second module, which invokes a third module, which invokes
a fourth …). This limit is primarily imposed to prevent infinite recursive calls. See the
section on recursion for more information.

· Temporary files directory: sets the path and name of the directory where are stored
various temporary files created by LARP during the execution of algorithms. These
include the files for managing input/output buffers as well as those for security backups
(to recover work on a project in case of a fatal crash of LARP).

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 71

It is recommended to let LARP select an appropriate directory for temporary files. This
directory must always be accessible and have enough available disk space for LARP to
function properly.

To specify the directory where temporary files are to be stored, uncheck the option Let
LARP select the directory and select the target directory (either by typing its name in
the edit box or by pressing the browser button at right of the edit box):

Figure 2-38: Selecting a directory for temporary fi les

2.6.1.3 Configuration of the super user mode and th e updating system
This section of the guide is relevant exclusively to the shareware version of LARP.

Configuration options under the Management tab (Figure 2-39) allow configuring and validating
the detection of super user keys activating the super user mode, and configuring LARP’s
integrated updating system.

Super user mode is only accessible in the shareware version of LARP when plagiarism
prevention functionalities are activated during the installation process. When plagiarism
prevention functionalities are not available, the Super user section is not displayed under the
Management tab.

Figure 2-39: Super user mode and updating system co nfigurations

2. Development environment LARP Users Guide

72 Copyright © 2004-2008 Marco Lavoie

Super user keys deactivate functions related to prevention of plagiarism by enabling super user
mode. The drop down list enumerates the key management libraries available on the computer.
When a library is selected, the Test button attempts to detect and validate a super user key
according to the specified username:

Figure 2-40: Unlock test

LARP’s integrated updating system, also available exclusively in the shareware version, is
configurable in two ways:

1. Where LARP updates are obtained from.

2. When LARP updates are retrieved.

LARP updates are usually retrieved from a Web server maintained by LARP’s author. The default
URL address of that server is http://larp.marcolavoie.ca/en/Updates/updates.inf. If no address is
specified in the box titled Source (Figure 2-39), updates are retrieved from this default server. An
alternate updates source may be used by entering the URL address to the file listing the updates.
In most circumstances the default source should be used.

When the option Check for updates upon start up of LARP is activated, LARP automatically
and silently queries the source for new updates upon each start up. When updates are available,
the user is informed and prompted for authorization to download and install them. If the option is
deactivated, users must periodically download and install the updates using the corresponding
top menu command. It is highly recommended to activate this option in order to have most up-to-
date LARP installations.

For more information on super user keys and plagiarism prevention in LARP, consult the section
presenting plagiarism prevention functionalities. For more information on updating LARP, see
LARP updates.

2.6.2 Color selection

LARP allows selecting colors for its editors, its execution console and for step execution. Color
configurations are accessible through the top menu (Options » Colors).

The color configuration window (Figure 2-41) contains tabbed panels to select interface elements
to configure the Console , the Editors and Step execution elements displayed in the editors.
Color configurable elements are listed as radio buttons controlling the attribution of colors. The
assignment of colors to interface elements is accomplished via the selection controls located in
the right section of the window.

The Default button re-initializes interface elements to their default color, i.e. those attributed upon
installation of LARP.

LARP Users Guide 2. Development environment

Copyright © 2004-2008 Marco Lavoie 73

Figure 2-41: Color configuration window

2.6.2.1 Colors in the execution console

The colors used in the execution console to display outputs produced during the execution of
algorithms may be configured according to the type of value displayed. The display colors for the
following three types of output are configurable:

1. integer numbers,

2. floating numbers, and

3. character strings.

Displaying these outputs with distinct colors allows identifying visually the type of a value
displayed in the execution console with WRITE and QUERY instructions.

By default, white is used to display all types of values in the execution console.

2.6.2.2 Colors in the editors

The following color attributes are configurable in LARP’s editors:

· The background color of the edit panel when modules (pseudo code and flowcharts) are
edited.

· The background color of the edit panel when input/output buffers (i.e. data) are edited.

· The background color of the gutter (numbering margin at left of the textual editor’s panel).

Furthermore, the textual editor's syntax highlighting capabilities are configurable. The colors used
to display following pseudo code elements are selectable:

· Reserved words of the LARP language

· The name of predefined functions

2. Development environment LARP Users Guide

74 Copyright © 2004-2008 Marco Lavoie

· Comments

· Character strings

The color of non-highlighted text in modules and input/output buffers may also be configured (via
the radio button titled Others). Note that syntax highlighting does not apply to the content of
flowchart instructions.

2.6.2.3 Colors for step execution

The following color attributes relating to step execution are configurable in LARP’s editors. Both
the textual editor and the graphical editor use this color configuration to display:

· The next instruction to be executed in step by step mode or walk mode.

· Instructions to which are attached break points.

LARP Users Guide 3. Super user mode

Copyright © 2004-2008 Marco Lavoie 75

3 Super user mode
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user mode.

To all projects created with the shareware version of LARP is associated the « signature » of its
author: the username is permanently inserted into the project file. Furthermore when plagiarism
prevention functionalities are activated, no user can alter the username attached to a project file
unless in super user mode .

Under normal mode of operations, LARP's development environment prevents users from
plagiarizing project files by restricting access to commands. By disabling specific commands in its
menus, LARP prevents the use of functionalities which are likely to be exploited by a user to
access and copy the documents in another user's project files.

Appending the author's username to a project file, along with other functionalities presented in the
following sections, constitute plagiarism prevention measures in LARP. These measures aim at
preventing any user from copying other people's project files content, in other words to cheat, in a
context of a group of users (i.e. a class of students) being evaluated using LARP. In such context,
the super user mode allows the instructor of deactivate plagiarism prevention measures for
pedagogic purposes or for class management such as distributing projects or marking homework.

To restrict access to super user mode, super user keys are required to activate it.

3.1 Plagiarism prevention
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

To prevent plagiarism in the context of a class of students using the shareware version of LARP
to build algorithms, some of the development environment commands are deactivated or their
functionalities are restricted. The reduced functionalities in LARP aim at preventing users to
exchange or to share algorithm modules.

Thanks to command restrictions, the documents of a project created by a student cannot be
ported to another student project. Furthermore, any attempt to modify a project file outside the
development environment (for instance using a third party text editor) is detected by LARP in
most circumstances. LARP automatically refuses to load any illicitly altered project file back into
its development environment. Finally, encryption based on username is integrated into clipboard
management (used for cut and paste commands within LARP), therefore preventing the use of
the clipboard to transfer module content from one student's project to that of another student.

Plagiarism prevention in LARP is based on the uniqueness of usernames. In the context of a
class with several students, it is consequently imperative that every student be assigned a distinct
username (such as student identification numbers).

Commands restrictions may only be enabled in the shareware version of LARP when plagiarism
prevention functionalities are activated during software installation. Plagiarism prevention is not
available in the freeware version of LARP.

3. Super user mode LARP Users Guide

76 Copyright © 2004-2008 Marco Lavoie

3.1.1 Active username
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

In order to prevent plagiarism through restrictions in functionalities in the shareware version of
LARP, usernames are used to distinguish users in a group. A username is a character string
uniquely identifying a user of LARP.

When LARP starts, the user identification window (see Figure 3-1) queries the user for a
username. For users with no username, any character string will do (for instance his name or
date of birth). The provided string of characters becomes the active username in LARP (as
displayed in the status bar). Upon creation of LARP projects, the active username is automatically
attached to the project in order to identify the user who created the project, in other words its
author.

Figure 3-1: Specifying a username

The user identification window provides the option of using the specified active username on
subsequent start-ups. If the option Use the above username… is enabled, the specified
username will automatically be selected as active username upon subsequent start-ups of LARP
and the user will not be prompted for a username.

The active username can be changed at all times through the top menu command Options »
Identification… . When changing the active username, no project file must be loaded into the
development environment as such project file may not be accessible under the new active
username. In such event, the user is informed to close the current project file prior to changing
the active username.

If a super user key is present and the active username corresponds to the key's pre-programmed
username, LARP's super user mode is activated. For information on the configuration LARP to
recognize super user keys, see section Configuration of the super user mode.

LARP Users Guide 3. Super user mode

Copyright © 2004-2008 Marco Lavoie 77

The active username is always displayed in the status panel. Usernames usage is only available
in the shareware version of LARP when plagiarism prevention functionalities are activated during
software installation. Usernames are not available in the freeware version of LARP. Furthermore,
project files may not be transferred back and forth between the shareware version and the
freeware version of LARP in order to prevent users from using the freeware to exchange project
file contents.

3.1.2 Username attached to project files
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

Upon creating a new LARP project (through the top menu or the control panel), the active
username (displayed in the status panel) is permanently embedded into the project file. No user
(i.e. student) may thereafter change the username linked to the project. When a project is saved
into a file, its attached username is saved along.

Prior to loading a project file, LARP first verifies that the username attached to the project (i.e.
read from the file) corresponds to the active username displayed in the status panel. Such
validation of usernames ensures that the sole user authorized to load a project file into LARP is
the project's original author, unless one assumes the author's identity. Even if one assumes the
identity of someone else by specifying their username as active username, such illegitimate user
cannot modify the username embedded into the file and therefore pretend to be the author of the
project file handed to an instructor.

This functionality ensures an instructor that no two students submit the same project file since a
unique username is embedded into the project file and it cannot be changed unless in super user
mode.

In order to load student project files into LARP without regards to their attached username, an
instructor must first activate super user mode. When in super user mode, LARP allows loading
any project file, regardless of its attached username.

When creating a project while in super user mode, no username is attached to the project file (i.e.
the project has no author). LARP projects without attached username are considered public
projects since they may be loaded by anyone without considerations for usernames. When a
public project is loaded in LARP, the active username is automatically attached to the loaded
project. As a result, when a student loads a public project, modifies it and then saves it back into
its file or any other file, his username will hereafter attached to the project file and no one else
may thereafter load it back into LARP to plagiarize its contents.

Note that usernames may only be used in the shareware version of LARP when plagiarism
prevention functionalities are activated during software installation. Usernames are not available
in the freeware version of LARP. Furthermore, project files with attached usernames may not be
transferred from the shareware version to the freeware version of LARP in order to prevent users
from using the freeware version to exchange project file contents.

3.1.3 Document encryption
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

To prevent a user from accessing the contents of someone else’s project file for extracting
modules, the shareware version of LARP uses numerical encryption to cipher project files. When
LARP saves a project into a file, its documents (i.e. its modules and input/output buffers) are

3. Super user mode LARP Users Guide

78 Copyright © 2004-2008 Marco Lavoie

encrypted using the active username as encryption key (the public and robust encryption
algorithm Blowfish is used in LARP to encode documents).

Since LARP project files are encrypted, an illegitimate user is prevented from using a third party
editor to access documents stored in a project file. In other words, the encryption of a project file
using the author’s username as encryption key ensures the confidentiality of the LARP project,
the author alone being the only one able to decipher its contents.

Furthermore, to prevent an illegitimate user from modifying a LARP project file using a third party
editor, an integrity signature is inserted in every LARP project file. If the project file is somehow
modified or corrupted, the alterations will be detected automatically by LARP when the project is
subsequently loaded in the development environment.

The only mean for an illegitimate user to load a project file created by another user into LARP is
to assume the author’s identity (i.e. specifying the author’s username as active username).
However, since the user cannot change the username attached to the project, he will not be able
to present the project file as his own.

Using the super user mode, an instructor may deactivate document encryption in order to load
anyone’s project files (such as project submitted by students) in LARP’s development
environment.

Note that usernames to encrypt project files are only used in the shareware version of LARP
when plagiarism prevention functionalities are activated during software installation. Usernames
are not available in the freeware version of LARP.

3.1.4 Cut and paste restrictions
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

To prevent the use of the system’s clipboard to transfer modules from one user's LARP project to
another user's project, the shareware version of LARP always encrypts module contents using
the active username as encryption key prior to copying it into the clipboard. So commands in the
development environment involving the clipboard (cut, copy and paste) can only be used to copy
contents within modules of a same project or throughout projects of a single user. Consequently,
encrypting clipboard contents prevents one from using the clipboard to copy modules from the
project of one user to another one's project, therefore preventing plagiarism.

Clipboard contents encryption is only applied to modules (pseudo code and flowchart
instructions). Input/output buffer contents are copied to the clipboard in clear text (i.e. not
encrypted), therefore allowing the use of the clipboard to copy data from on user's project to
another one's project. By definition, input/output buffers contain data or results, both of which are
considered public.

By activating super user mode, an instructor can deactivate clipboard contents encryption,
allowing the use of the clipboard to cut and paste module contents back and forth between LARP
and other applications such as text editors and presentation software.

Note that usernames to encrypt clipboard contents are only used in the shareware version of
LARP when plagiarism prevention functionalities are activated during software installation.
Usernames are not available in the freeware version of LARP.

LARP Users Guide 3. Super user mode

Copyright © 2004-2008 Marco Lavoie 79

3.1.5 Printing restrictions
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

To prevent a student from producing a paper copy of a LARP project and distribute it to his peers,
printing modules is restricted to super user mode in the shareware version of LARP. Input/output
buffers can however be printed by anyone, even when super user mode is not activated.

When the print command is invoked, a document selection window is displayed:

Figure 3-2: Printing documents

The user can select the module (when super user mode is activated) or input/output buffer to
print, or even choose to print all documents within the project. Print options allow selecting printer
and paper orientation. When super user mode is not activated, only input/output buffers may be
printed.

Note that printing restrictions are only applied in the shareware version of LARP when plagiarism
prevention functionalities are activated during software installation. The freeware version of LARP
always allows modules printing, as well as the shareware version when plagiarism prevention
functionalities are not activated.

3.2 Unlocking the development environment
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

In a classroom context where students must submit LARP projects as part of the evaluation
process, an instructor must be able to deactivate plagiarism prevention functionalities in the
shareware version of LARP in order to distribute project files to students and to load projects
submitted by students for evaluation purposes. The super user mode allows an instructor to
deactivate plagiarism prevention functionalities in order to carry out these tasks.

To prevent students from activating super user mode, a super user key is required to activate it.
LARP super user keys are periphericals (key chain sized dongles) to be connected into the
computer's USB (Universal Serial Bus) or parallel port. Every super user key is sold pre-
configured with a hard coded username.

Figure 3-3: Super user key (for USB port)

3. Super user mode LARP Users Guide

80 Copyright © 2004-2008 Marco Lavoie

Figure 3-4: Super user key (for parallel port)

Upon start up, LARP probes each USB and parallel port of the computer in order to detect the
presence of a super user key. If such key is detected and its hard coded username corresponds
to the active username, super user mode is thereafter activated. When super user mode is
activated, the letters SU (for Super User) appear in the active username field of the status panel:

Figure 3-5: Super user mode indicator

To acquire LARP super user keys, see the section titled Ordering super user keys.

Notes: the computer ports are probed for the presence of a super user key during the start up
process of the shareware version of LARP and whenever the active username is changed via the
top menu. At any other times the super user key may be removed from its port without
deactivating super user mode in LARP.

Note also that super user keys are only used in the shareware version of LARP when plagiarism
prevention functionalities are activated during software installation. The shareware version
without plagiarism prevention functionalities and the freeware version (which does not exploit
plagiarism prevention functionalities) do not require super user keys.

3.2.1 Selecting a key technology
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

Since the shareware version of LARP supports several super user key technologies, the software
must be configured to use the proper technology according to keys being used. Consult the
section titled Configuration of the super user mode for more information on specifying a key
technology.

3.2.2 Project statistics

When a user creates and works on a LARP project, the following statistics are automatically
gathered by LARP:

· The project’s creation date.

· The total time the project was loaded in LARP’s development environment.

· The number of times the project was compiled and run since its creation.

· The number of times the project was saved in its project file (excluding security backups)
since its creation.

LARP Users Guide 3. Super user mode

Copyright © 2004-2008 Marco Lavoie 81

These statistics allow an instructor to identify students which may have submitted a LARP project
copied from someone else’s work. Suspicious statistics usually suggest plagiarism. For instance,
a functional LARP project made of several modules but edited for a few minutes or with few
compilations could be considered suspect.

In shareware version of LARP with plagiarism prevention functionalities activated, statistics
gathered on a LARP project are exclusively accessible when super user mode is activated, via
the top menu. Statistics are always accessible when plagiarism prevention functionalities are
disabled during installation or in the freeware version of LARP, with the exception of usernames
not being displayed.

Figure 3-6: Project statistics

The Reinitialize button resets all statistics to zero, and the attached username gets erased. By
reinitializing the statistics and username associated to a student project, an instructor may
convert the LARP project into a public project file.

3.2.3 Converting flowcharts to pseudo code

LARP allows the user to convert project modules from flowchart to pseudo-code. When a
flowchart module is displayed in the graphical editor, the top menu command View » Pseudo
code… displays a new window listing the pseudo code equivalent of the edited flowchart:

Figure 3-7: Converting a flowchart module to pseudo code

The Copy to clipboard button allows copying the listed pseudo code into the clipboard in text
form. This pseudo code may afterward be reintroduced into the project through cut and paste.

3. Super user mode LARP Users Guide

82 Copyright © 2004-2008 Marco Lavoie

In the shareware version of LARP with plagiarism prevention functionalities activated, the
conversion of flowcharts to pseudo code is restricted to super user mode in order for an instructor
to impose the use of pseudo code among its students for formulating algorithms with LARP.
Flowchart conversion is always accessible when plagiarism prevention functionalities are
disabled during installation, as well as in the freeware version of LARP.

3.2.4 Public project files
This section of the guide is relevant exclusively to the shareware version of LARP. Furthermore, plagiarism
prevention functionalities must be activated during software installation in order to have access to super user
mode.

When a project is created in the shareware version of LARP with super user mode activated, the
user’s username (i.e. the active username appearing in the status panel) gets permanently
embedded into the project, and this user alone is later allowed to reload the project into LARP
(see section Username attached to project files).

In such context, how can an instructor distribute a LARP project file to students?

When a project is created while super user mode is activated, no username is attached to the
project or its project file. Furthermore, any project file with no attached username may be loaded
into LARP whatever the active username (i.e. all users may load the project file), at which point
the active username gets permanently attached to the project.

In other words, an instructor may distribute to students a project file created and saved while in
super user mode. Such project is called a public project. Any student may then load a public
project in LARP’s development environment and modify it in any way. When it gets saved back
into its file, the student’s username is automatically attached to the project, therefore preventing
another student from accessing the modified project file.

An instructor in super user mode can transform any project into a public project (i.e. with no
attached username) via the Reinitialize button in the Statistics window.

Project files created with the shareware version of LARP with plagiarism prevention functionalities
deactivated, as well as the ones created with the freeware version of LARP, are always public
project files since usernames are not available. Furthermore, project files may not be transferred
back and forth between the shareware and the freeware versions of LARP in order to prevent
users from using the freeware version to exchange project file contents.

LARP Users Guide 4. My first algorithm

Copyright © 2004-2008 Marco Lavoie 83

4 My first algorithm
This chapter presents LARP's pseudo code language and flowchart instructions. The language is
flexible and intuitive, allowing one to easily formulate algorithms.

This first example illustrates the syntax of pseudo code instructions and flowchart instructions in
LARP. It displays on screen the character string Hello world!

 \\ Very simple pseudo code!
 START
 WRITE "Hello world!"
 END

Pseudo code 4-1: Very simple pseudo code

Flowchart 4-1: A very simple flowchart

The instructions in the algorithm above are explained in the following sections.

4.1 Comments

As in most programming languages, comments may be inserted into LARP algorithms.

Comments are inserted into pseudo code by preceding text with \\ (two successive backslashes);
all text up to the end of the line is then considered as comments and thus ignored during
compilation of the algorithm. To extend a comment on several lines, each line must begin with \\:

 \\ Example of a comment extending on
 \\ several lines
 START
 WRITE "Hello world!" \\ Comment at end of line
 END

Pseudo code 4-2: Comments

Comments are inserted into LARP flowcharts (as depicted in Flowchart 4-1) using the Comment
instruction (Figure 4-1), available through the template panel or through the graphical editor’s
contextual menus.

4. My first algorithm LARP Users Guide

84 Copyright © 2004-2008 Marco Lavoie

Figure 4-1: Comment templates

4.2 Begin point and end point of an algorithm

A LARP algorithm must start with the BEGIN instruction. This instruction indicates the starting
point for the execution of algorithms. The instruction following BEGIN (in Pseudo code 4-1 and
Flowchart 4-1, WRITE "Hello world!") is the first one processed when the algorithm is executed.

Reciprocally, the END instruction indicates where an algorithm ends. The execution of an
algorithm stops when the END instruction is reached.

As explained in subsequent sections, a LARP algorithm may be divided into several modules
where each module is a distinct pseudo code or flowchart. In such context, one and only one of
these modules must have BEGIN and END instructions. These instructions indicate which
module starts and ends the execution of the algorithm.

Since an algorithm may contain a single starting point of execution, only one module in the
algorithm has a BEGIN instruction. Likewise, that same module is the only one in the algorithm
ending with the END instruction. The module containing the BEGIN and END instructions is
called the main module. If an algorithm is made of more than one module, the remaining modules
are called auxiliary modules.

When a new project is created in LARP’s development environment, START and END
instructions are automatically inserted into the project’s main module.

4.3 Syntax of instructions

As in all programming languages, LARP provides a set of instructions allowing one to formulate
algorithms as pseudo code and flowcharts. These instructions may accept one or more
arguments and their syntax corresponds to one of the following formats:

instruction arg1, arg2, ...

or

instruction (arg1, arg2, ...)

The example below (Pseudo code 4-3 and Flowchart 4-2) use the WRITE instruction to display
results in the execution console. A single WRITE instruction can produce several results:

 \\ Example of instructions
 START
 WRITE "Maximum = ", MAXIMUM(12, 2, 9)
 END

Pseudo code 4-3: Syntax of instructions

As noted in this example, WRITE instructions adopt the first syntax form while MAXIMUM
instructions adopt the second.

LARP Users Guide 4. My first algorithm

Copyright © 2004-2008 Marco Lavoie 85

Flowchart 4-2: Syntax of instructions

Note also that LARP makes no distinction between uppercase and lowercase letters. Instructions
WRITE, UNTIL and SELECTION may therefore be spelled Write , Until and Selection , or write ,
until and selection .

In LARP’s online help, all instructions are formulated in uppercase letters. This convention allows
one to quickly identify LARP reserved words in a pseudo code or a flowchart.

4.4 Separation of instructions

Instructions in a pseudo code module are generally written on separate lines. So, a change of line
(i.e. the insertion of a carriage return at the end of a line) indicates the end of an instruction and
the beginning of the following one. It is howeverpossible to extend a long instruction to the
following line by ending the first line with the $ symbol:

 \\ Less obvious pseudo code
 START
 READ a, b, c
 WRITE "The maximum among the three values ", a, ", ", b, " and ", $
 c , " is " , MAXIMUM(a, b, c)
 END

Pseudo code 4-4: Separation of instructions

A long instruction can therefore be extended on several lines, every line except the last ending
with $.

The same principle applies to flowcharts. A long instruction may be split into several ones by
extending it into subsequent sequential instructions, all but the last one ending with $:

4. My first algorithm LARP Users Guide

86 Copyright © 2004-2008 Marco Lavoie

Flowchart 4-3: Extending flowchart instructions

4.5 Creating a LARP project

Here are the minimal steps required to produce and run an algorithm with the shareware version
of LARP. If the freeware version of LARP is being used, steps 2 and 3 may be ignored:

1. Start LARP and close the welcome window (its closes up automatically after a few
seconds if the Close button is not pressed).

Figure 4-2: Welcome window

2. If the shareware is not registered, the registration window (Figure 4-3) presents
instructions for registering LARP. Press the Register later button for now. For more
information on the registering your LARP installation, consult the Registration section.
Note that this window is not displayed if the shareware is registered or if you are using
the freeware version of LARP.

LARP Users Guide 4. My first algorithm

Copyright © 2004-2008 Marco Lavoie 87

Figure 4-3: Registration window

3. When plagiarism prevention functionalities are activated, every user of LARP must be
authenticated with a username (Figure 4-4). This username is used to identify authors of
LARP projects in an educational environment (i.e. in a class of students). If you do not
have a username such as one appointed by a teacher, enter any string of characters
and/or digits. If you check the Use above username… box, LARP will automatically
assume the specified username on subsequent start-ups:

Figure 4-4: LARP username

The user identification window is not displayed when plagiarism prevention functionalities
are not activated, which is always the case for the freeware version of LARP.

4. My first algorithm LARP Users Guide

88 Copyright © 2004-2008 Marco Lavoie

4. If your LARP installation is registered and your computer connected to the Internet,
LARP’s integrated update system attempts to determine if new updates are available for
your installation. If so, you are prompted for the authorization to download and install the
updates. For now you may refuse the updates; you will have the opportunity to install
them later.

The integrated update system is not available in the freeware version of LARP.

5. Select the command New » File from LARP’s top menu. This command creates a new
project or document. Since LARP currently has no project within its development
environment, the displayed New window (Figure 4-5) does not allow to create modules
nor input/output buffers at this stage. Select the Pseudo code option in order to create a
new project using pseudo code for its main module, then press the OK button.

Figure 4-5: New window

6. The textual editor displays a minimal pseudo code in the new project’s main module,
delimited by BEGIN and END instructions. Insert a WRITE instruction such as the one
presented in the following pseudo code:

LARP Users Guide 4. My first algorithm

Copyright © 2004-2008 Marco Lavoie 89

Figure 4-6: LARP algorithm being edited

7. To execute the new algorithm, select the Project » Execute… command from the top
menu. This command runs the algorithm, redirecting all inputs and outputs to the
execution console (Figure 4-7). As stated in the console, press any keyboard key to close
the console and go back to the LARP’s development environment.

Figure 4-7: Executing the algorithm

If executing the algorithm failed, it is most probably due to errors in the provided pseudo
code instructions. In such cases the execution console is not displayed and appropriate
error messages are listed in the message panel (Figure 4-8).

4. My first algorithm LARP Users Guide

90 Copyright © 2004-2008 Marco Lavoie

8. Note that the message panel shows information related to compilation and execution. If
you entered erroneous pseudo code in the editor, errors will be identified in the message
panel.

Figure 4-8: Messages generated during compilation a nd execution

9. To save your work in a project file, select the File » Save command in the top menu. You
must specify a directory and a name for the project file:

Figure 4-9: Saving the project

That’s it! You have just created, executed and saved your first LARP project. You are ready to
explore LARP and develop more complex algorithms. LARP User’s Guide contains all information
necessary to produce a wide variety of algorithms.

LARP Users Guide 5. Constants and variables

Copyright © 2004-2008 Marco Lavoie 91

5 Constants and variables
In LARP pseudo codes and flowcharts, a constant is a numerical or an alphanumeric value. For
instance, 12.3 a numerical constant representing a fractional value, and "hello" is an
alphanumeric constant representing a character string. LARP supports several constant types.

A variable in a LARP algorithm (as in most programming languages such as C++ and Java) is a
memory location in the computer where data may be stored.

A variable can be seen as a box in which information may be stored and later recovered. Unlike
the box which is empty once its content is removed, variables keep a "copy" of the data stored
within by the algorithm (with assignment instructions). So, when the algorithm recovers data from
a variable, it recovers in fact a copy of that data. The variable therefore retains its data (i.e. its
content), which may be recovered repeatedly. In fact, a variable retains its data until other data is
stored in the variable, overwriting its previous content, or until the variable is destroyed by the
algorithm.

Since an algorithm may use several variables to manage data, each variable in the algorithm is
given a unique name attributed by the programmer. The uniqueness of variable names allows the
algorithm to identify precisely which variable to manipulate.

Unlike most traditional programming languages (such as C ++ and Java), LARP is polymorphic
contextual. This term means that a LARP algorithm does not have to explicitly define its variables
prior to using them. This programming philosophy is frequently found in scripting languages such
as Perl and Lisp. Since the type of a variable depends on its contents and this content may vary
during the execution of the algorithm, so does its type.

5.1 Variable names

As in most programming languages, specific rules oversee the selection of variable names:

· A variable name must start with a letter (In in Z, has in z) or the underline character (_).

· A variable name must consist of a combination of lowercase letters, uppercase letters,
digits and the underline character.

· A variable name may not correspond to a LARP reserved word, such as WRITE, END, IF
and PI.

· LARP does not differentiate lowercase and uppercase letters, which means that Name,
name and NAME all refer to the same variable.

· LARP ignores accents, what means that akai and akaï refer to the same variable.

Here are examples of valid and invalid variable names:

VALID INVALID

Date 101_French Does not begin with a letter or _
DATE Sale Price The space is not allowed
_201 Pay&Bonus Special characters (others than _) are forbidden
Table10
Sale_Price
Akaï

5. Constants and variables LARP Users Guide

92 Copyright © 2004-2008 Marco Lavoie

Storing values in variables is usually accomplished with the assignment operator (=):

 \\ Assignment operations
 price = 10.20 \\ assign a numeric val ue
 name = "John Doe" \\ assign a character s tring
 marks = [75, 56, 94, 69] \\ assign a container

Pseudo code 5-1: Variable names

Note: containers are presented in a subsequent section.

5.2 Operations

LARP is a polymorphic contextual language, which means the type of a variable depends on its
content. Consequently the type of a variable may vary during the execution of the algorithm.

Using the assignment, an algorithm can store a value of any type in a variable. Furthermore,
values of different types may be combined in a single instruction and the conversion of values
from a type to another (in order to execute the instruction) is usually transparent.

For example:

 a = 1 + 2 \\ Yields a = integer 3
 a = "1" + 2 \\ Also yields a = integer 3
 a = "x" + 2 \\ Yields a = character string "x2 "
 a = "1" + "2" \\ Yields a = character string "12 "

Pseudo code 5-2: The operators

In the above example, LARP converts character strings to numerical values in order to perform
the required mathematical operations (ex: "1" + 2 results in 3). The result of some operations is
therefore defined according to the type of values to which they are applied (ex: "a" + "b" results
in "ab" , while 1 + 2 results in 3).

Operations as depicted in Pseudo code 5-2 are generally found into flowcharts within sequential
instructions. They may however also be found in other instructions such as conditions and
arguments in module calls.

Flowchart 5-1: Sequential operations

5.3 Numerical values

There are two types of numerical values: integers and floats. Integer values do not have a
fractional part while float values do.

LARP Users Guide 5. Constants and variables

Copyright © 2004-2008 Marco Lavoie 93

Here are examples of numerical values:

 Value = 2345 \\ Integer in decimal notation
 Value = 1234.567 \\ Float in decimal notation
 Value = 1.23E-10 \\ Float in scientific notation

Pseudo code 5-3: Numerical values

Scientific notation allows to express very small numbers (ex: 2.5E-201) and very large ones (ex:
5E156). The part after E (which can also be written in lower case, e) represents a power of 10
multiplying the number before E. For example, 2.1E7 is equivalent to 21000000 (i.e. 2.1x107),
and 2.1E-7 is equivalent to 0.00000021 (i.e. 2.1x10-7).

The range of values which may be manipulated by an algorithm are:

· integer values within -2147483648 to -2147483647, and

· float values within 5.0E-324 (5.0x10-324) to 1.7E308 (1.7x10308)

Any value exceeding these limits in an instruction (for example 1.7E308 * 12) result in a fatal error
during the execution of the algorithm.

5.4 Character strings

A character string can be assigned to a variable using the assignment operator. There are two
equivalent representations of character strings in LARP:

 name = 'Antonio' \\ String within single quo tes
 name = "Antonio" \\ String within double quo tes

Pseudo code 5-4: Character strings

The availability of these two representations allows the insertion of single or double quotes in
character string constants:

 phrase = 'Say "Hello"' \\ String containing doubl e quotes
 name = "D'Acosta" \\ String containing a sin gle quote

Pseudo code 5-5: Single and double quotes in charac ter strings

5.5 Escape sequences

LARP distinctively handles backslashes (\) found in character strings. A backslash indicates the
start of an escape sequence representing a special character. An escape sequence consists of
the character « \ » followed by a specific letter.

Here are the escape sequences recognized by LARP:

Escape sequence Description

\n Carriage return
\a Bell (« beep! »)
\b Backspace one character
\\ Represents the \

Table 5-1: Escape sequences

5. Constants and variables LARP Users Guide

94 Copyright © 2004-2008 Marco Lavoie

Note that escape sequence \\ must be used to represent the backslash in a character string since
a backslash by itself is interpreted as the start of an escape sequence.

Here is an example of use of escape sequences. The instruction rings the bell and shows two
lines of text in the execution console:

Flowchart 5-2: Example of escape sequences

5.6 Assignment

As mentioned earlier, the assignment operator (=) assigns a value to a variable. The name of the
variable receiving the value is specified on left of the operator, while on right of the operator is
specified an expression producing the value to be assigned to the variable:

 a = 123 \\ Variable a receives integ er 123
 b = "Hello" \\ Variable b receives a str ing
 c = SINUS(10.2) + 1 \\ Variable c receives 0.3001253124

Pseudo code 5-6: Assignments

Since LARP is polymorphic contextual it does not require variables to be "declared" prior to being
used (as it is case in many programming languages such as C++ and Java). A variable is
automatically created on its first value assignment (for instance with the assignment operator).

When no value is assigned to a variable, it is said indeterminate. If an algorithm attempts to
display the value of an indeterminate variable in the execution console, the indicator #IND is
displayed in red letters to underline the fact that the variable has no assigned value. A warning
message is also displayed in the message panel to point out which manipulated variable is
indeterminate.

LARP Users Guide 6. Containers

Copyright © 2004-2008 Marco Lavoie 95

6 Containers
As well as supporting integer values, float values and character strings, LARP also supports
grouping data into containers. For those familiar with traditional programming languages such as
C++ and Java, a container is a generalization of the array. Contrary to an array which may only
contain elements of a common type (it is the case in C++), a LARP container can hold data of
different types, including numerical values, character strings and even other containers.

6.1 Grouping values together

In LARP‘s syntax, a container is a structure able to contain several values at once. Every value
stored in a container can be accessed, modified and/or retrieved from the container.

Container constants are expressed using brackets ([and]) inside which elements (i.e. values
stored in the container) are enumerated, separated with commas (,). The following example
creates two containers and assigns them to variables:

 Days = ["Mo","Tu","We","Th","Fr","Sa","Su"] \\ Container of strings
 Marks = [45, 78, 56, 96, 35] \\ Container of integer
 \\ values

Pseudo code 6-1: Containers

Elements stored in a container may vary in type. For instance, the following container holds
various data related to an employee (her name, her identification number, her wages, the year
she was hired and the amount she received on her latest four pay checks):

 Data = ["Jane Doe", 2013345, 56320.00, 1996, $
 [1401.98, 1456.02, 1399.57, 1423.41]]

Pseudo code 6-2: Container in a container

A container may even contain other containers. In Pseudo code 6-3, the 5th element in variable
Data is a container holding four elements.

6.2 Access to container elements

Container elements are accessible through their position in the container. The element’s position
is specified between brackets ([and]) following the name of the variable holding the container.
The first element in a container is at position 1. In the following example, two elements of the
container assigned to variable a are accessed (the second instruction references the first element
of the container, and the last instruction references the third element):

 a = [10, 2.3E-12, "Monday", -17, 0.234] \\ a is a container
 b = a[1] - 3 \\ b = 7
 c = a[3] \\ c = "M onday"

Pseudo code 6-3: Accessing elements in a container

6. Containers LARP Users Guide

96 Copyright © 2004-2008 Marco Lavoie

The assignment is used to replace elements of a container. It may also be used to add elements
to a container:

Flowchart 6-1: Modifying elements of a container

6.3 Retrieving container elements

Accessing a container element does not remove the element from the container. Container a
remains unchanged in the following pseudo code:

 WRITE a[4]
 i = 2
 b = a[i] + a[i+1]
 WRITE b + a[i-1]

Pseudo code 6-4: Accessing container elements

The DESTROY instruction removes an element from a container. This instruction removes the
element at the specified position within the given container but does not free its position. The
resulting container is said to have an indeterminate element at this position. Indeterminate values
are represented with the identifier #IND in the execution console:

 a = [10, 20, 30, 40] \\ a is a container
 DESTROY a[3] \\ a = [10, 20, , 40]
 WRITE a \\ displays [10 20 #IND 40]
 a[3] = 30 \\ a = [10, 20, 30, 40]

Pseudo code 6-5: Indeterminate elements in a contai ner

LARP Users Guide 6. Containers

Copyright © 2004-2008 Marco Lavoie 97

The PACK instruction eliminates indeterminate elements in a container:

Flowchart 6-2: Packing a container

LARP provides predefined functions for counting elements in containers:

Fonction Description

SIZE Returns the number of positions in a container, including those held by
indeterminate elements.

COUNT Returns the number of defined elements in a container (i.e. excluding those
indeterminate).

Table 6-1: Functions for manipulating containers

LARP Users Guide 7. Inputs and outputs

Copyright © 2004-2008 Marco Lavoie 99

7 Inputs and outputs
LARP provides instructions for reading data (READ) and for writing results (WRITE). These two
instructions interact with the execution console for algorithms to read data from the keyboard and
display results on screen. Input/output instructions can also interact with files and input/output
buffers to store results and later retrieve it. LARP also provides an instruction to display a query
and read the user’s answer at once: the QUERY instruction.

As it does for pseudo code, LARP provides a flowchart instruction for handling input/output
operations in flowcharts.

When multiple data are read or multiple results displayed in a single input/output instruction, a
delimiter character, the separator, is used to separate values in the execution console.

Input/output instructions in LARP are presented in the following sections.

7.1 Input/output instruction for flowcharts

Inputs and outputs are represented in flowcharts with the input/output instruction:

Figure 7-1: Input/output instruction for flowcharts

The input/output flowchart instruction allows to formulate a read instruction, a write instruction or
a query instruction, depending on instruction’s attributes. These attributes are specified through
the flowchart instruction editing window, displayed when the instruction is edited:

Figure 7-2: Editing an input/output flowchart instr uction

7. Inputs and outputs LARP Users Guide

100 Copyright © 2004-2008 Marco Lavoie

When an attribute is specified in the Read field, the flowchart instruction performs a read
operation. When an attribute is specified in the Write field, the flowchart instruction performs a
write operation. If attributes are provided for both the Read and Write fields, the flowchart
instruction performs a query. The Channel field is for specifying an input/output channel to
redirect the operation to files or input/output buffers. Note that query operations may only be
directed towards the execution console, and therefore cannot involve an input/output channel.
For more information on input/output instructions, see the following sections.

7.2 Read instruction

The READ instruction allows to read one or more values (even containers) into variables.
Reading is usually performed through the execution console using the keyboard.

In its basic form, READ is used to read a single value and to assign it to the specified variable:

 READ a \\ Read a value into variable a

Pseudo code 7-1: Reading a value

When executing this instruction, the execution console displays a blinking cursor and waits for the
user to input a value through the keyboard. Once the carriage return key is pressed, the entered
value is assigned to the given variable (a in the above example). The type of value assigned
depends on the format of the entered text:

Format of entered text Examples Type of value

Sequence of digits 234, -76 Integer

Sequence of digits with a decimal point or an exponent 2.1, -2E17 Float

Sequence of characters starting with something else than a digit Hello, a234 String

Table 7-1: Interpretation of text read

A single READ instruction can read several values when a list of variables is provided:

 READ a, b, c \\ Read a value for each variable

Pseudo code 7-2: Reading several values

While reading inputs, READ considers spaces and carriage returns as value separators. For
example, when Pseudo code 7-2 is executed and the following text input in the execution
console:

 Hello 234 -14.78

Figure 7-3: Interpreting text entered on a READ ins truction

the three provided values are respectively assigned, in order, to the corresponding variables
(a = "Hello" , b = 234 and c = -14.78).

If the user does not provide enough values for the number of variables to be read, READ waits
for further inputs before completing its execution. If the user provides too many values prior to
pressing the carriage return, all superfluous values are ignored.

LARP Users Guide 7. Inputs and outputs

Copyright © 2004-2008 Marco Lavoie 101

The Read attribute in an input/output flowchart instruction is similar to the READ instruction in
pseudo code:

Figure 7-4: Reading values in a flowchart

7.3 Write instruction

The WRITE instruction writes one or several expression values to the execution console. Used
alone (i.e. without values), its execution results in a carriage return (i.e. a change of line) written
to the execution console. WRITE also accepts one or more expressions which values are to be
displayed. When more than one expression is provided to WRITE, it shows them separated by
spaces (the default separator).

Pseudo code 7-3 uses WRITE instructions to display the value of various expressions:

 a = 100
 WRITE "HELLO" \\ Write a character string
 WRITE \\ Write an empty line
 WRITE 1, 10+2, a * 2 \\ Write three values

Pseudo code 7-3: Writing the value of expressions

When Pseudo code 7-3 is executed by LARP, the following results appear in the execution
console:

 HELLO

 1 12 200

Figure 7-5: Writing to the execution console

Note that WRITE always produces a change of line after writing its last value. To display values
without changing line after the last value, the QUERY instruction must be used.

7. Inputs and outputs LARP Users Guide

102 Copyright © 2004-2008 Marco Lavoie

The Write attribute of an input/output flowchart instruction is similar to the WRITE instruction in
pseudo code:

Figure 7-6: Writing expression values in a flowchar t

7.4 Query instruction

The WRITE instruction appends a carriage return to the end of values it displays in the execution
console. The resulting change of line can be a visual annoyance when there is a need to query
the user for an input.

Consider following pseudo code:

 WRITE "Enter a number: " \\ Query
 READ Number

Pseudo code 7-4: Prompting the user for an input

This pseudo code displays the query on one line, then reads the requested number on the
following line since WRITE always ends its outputs with a carriage return:

 Enter a number:
 17

Figure 7-7: An inelegant query

The QUERY instruction avoids this inconvenience by displaying a string and read values in a
single instruction:

 QUERY "Enter a number: ", Number \\ Query and read

Pseudo code 7-5: The QUERY instruction

LARP Users Guide 7. Inputs and outputs

Copyright © 2004-2008 Marco Lavoie 103

The above instruction displays the query and reads the requested number on the same line in the
execution console:

 Enter a number: 17

Figure 7-8: The QUERY instruction

As with the WRITE instruction, QUERY can obtain the query string from the evaluation of an
expression. And like the READ instruction, QUERY can read more than one input:

 Prompt = "Enter three numbers: "
 QUERY Prompt, N1, N2, N3 \\ Query obtained fro m a variable

Pseudo code 7-6: Querying for multiple inputs

Reading inputs is optional in QUERY. When no variable is listed after the query string in a
QUERY instruction, the query string is displayed without any reading done afterward. This allows
multiple QUERY instructions to display their character string consecutively on the same line.

The format of the Write and Read attributes of an input/output flowchart instruction is similar to
the QUERY instruction in pseudo code:

Figure 7-9: Insert a query in a flowchart

7.5 Separator

By default, READ and QUERY instructions use spaces to distinguish values when reading in the
execution console, and the WRITE instruction (as well as QUERY) also uses a space to separate
values written to the execution console:

Instruction Default interpretation of spaces

READ Spaces allow to distinguish one value from the next.

WRITE A space separates values produced by a single instruction. WRITE also uses the
space to separate elements when displaying a container.

Table 7-2: Interpretation of space in READ and WRIT E instructions

7. Inputs and outputs LARP Users Guide

104 Copyright © 2004-2008 Marco Lavoie

LARP provides an instruction to change the character to be used as separator:

 WRITE 10, 20 \\ Write two values separated by a spac e
 SEPARATOR "," \\ Changing the separator to comma
 WRITE 10, 20 \\ Write two values separated by a comm a

Pseudo code 7-7: The SEPARATOR instruction

Executing the above pseudo code results in the following outputs in the execution console:

 10 20
 10,20

Figure 7-10: Changing the separator

The separator also has an impact on the READ instruction since the user must enter the active
separator to distinguish entered values. For instance, let’s consider following pseudo code:

 WRITE "Name?"
 READ Name
 WRITE "Name read = ", Name
 SEPARATOR "," \\ Changing the separator
 WRITE "Name?"
 READ Name
 WRITE "Name read = ", Name

Pseudo code 7-8: Changing separator

If the user inputs the name Jane Doe for both READ instructions during the execution of Pseudo
code 7-8, the execution console will display the followings:

 Name?
 Jane Doe
 Name read = Jane
 Name?
 Jane Doe
 Name read = Jane Doe

Figure 7-11: Using the separator to properly read d ata

An algorithm may thus use an alternate character as separator in order to read character strings
with spaces. Note that the carriage return is always considered as a separator, whatever
character is identified as active separator with the SEPARATOR instruction.

In flowcharts, the SEPARATOR instruction must be inserted into a sequential instruction:

Flowchart 7-1: Changing separator

LARP Users Guide 8. Operators and predefined functions

Copyright © 2004-2008 Marco Lavoie 105

8 Operators and predefined functions

In order to support mathematical computations, LARP recognizes all basic arithmetical operations
as well as many mathematical functions generally found in traditional programming languages
such as Java and C++. LARP also provides several functions for manipulating character strings
and containers.

8.1 Arithmetic operators

LARP supports all conventional arithmetic operators. These are presented in increasing order of
priority in Table 8-1 (operators of equal priority are listed on the same line):

Operators Description

 +, - Addition and subtraction

 *, /, //, % Multiplication, division , integer division and modulo

 ^ Power

 - Negation

Table 8-1: Arithmetic operators

The integer division is the division of an integer (i.e. a value with no decimal point) by another
integer, yielding an integer result; any residual value resulting from an integer division is ignored.
So, 17//5 results in 3, the rest (2) being dropped. The modulo operator (%) returns the residual of
an integer division. For example, 17%5 yields 2, which is the residual of 17//5.

LARP evaluates expression elements according to operator priorities, i.e. negations (-) are first
evaluated, then powers (^), then multiplications (*), divisions (/ and //) and modulos (%), and
finally additions (+) and subtractions (-). Two successive operators of equal priority are evaluated
from left to right. Expressions can also be grouped within parentheses in order to circumvent
operator priorities:

 WRITE 7/5 \\ displays 1.4
 WRITE 7//5 \\ displays 1
 WRITE 7%5 \\ displays 2
 WRITE 2^5 \\ displays 32
 WRITE 4+8/2+1 \\ equivalent to 4+(8/2)+1 = 9
 WRITE (4+8)/(2+1) \\ displays 4

Pseudo code 8-1: Arithmetic operators

For educational purposes, animation may be used in step execution to visualize the impact of
operator priorities on the evaluation process of arithmetic expressions.

Some arithmetic operators accept only specific type of values. For example both the integer
division (//) and the modulo (%) require expressions on both sides of the operator to be integer
values. When conversions into integers are required, the fractional part of floating values is
eliminated. For instance, 14.8%5 is evaluated as 14%5, resulting in 4.

When an arithmetic expression involves incompatible types which cannot be converted to
appropriate types for the targeted operator, LARP stops the execution of the algorithm and
displays an error message indicating the incompatibility. Expressions involving indeterminate
values also produce an error when evaluated during execution.

8. Operators and predefined functions LARP Users Guide

106 Copyright © 2004-2008 Marco Lavoie

8.2 String operators

LARP offers one operator for handling character strings:

Operator Description

 + Concatenation (i.e. joining two strings)

Table 8-2: Operators for character strings

The + operator joins end to end (commonly called concatenation) two character strings. The
example below demonstrates use of this operator (the resulting output is To be or not to be):

Flowchart 8-1: Concatenating character strings

Character strings involved in a concatenation operation remain unchanged. In the second
assignment in the above example, the string in variable a is unchanged.

Warning : when the + operator involves a character string and a number (integer or float), LARP
first attempts to convert the character string into a number in order to perform an addition. If
conversion fails, the number is then converted into a character string and there is concatenation.
Examples below demonstrate these conversions of type in action:

 a = "12" + 10 \\ a = integer 22
 b = 10 + "12" \\ b = integer 22
 c = "12z" + 10 \\ c = string "12z10"
 d = "12" + "10" \\ d = string "1210"
 e = d + 2000 \\ e = integer 3210
 f = "12" + "10" + 5 \\ f = integer 1215, since the first +
 \\ produces "1210"

Pseudo code 8-2: Operator + applied to values of di stinct types

LARP Users Guide 8. Operators and predefined functions

Copyright © 2004-2008 Marco Lavoie 107

8.3 Container operators

LARP supports two operators for handling containers:

Operators Descriptions

 + Concatenation (i.e. joining two containers).

 - Difference, eliminating from a container elements found in another container.

Table 8-3: Operators for container

The + operator, commonly called concatenation, is used to join containers end to end or to add
elements at the front or at the end of a container. The following example demonstrates the
behaviour of this operator:

 a = [20, 30] + [30, 40] \\ a = [20, 30, 30, 40]
 b = 10 + a + 50 \\ b = [10, 20, 30, 30, 40, 50]

Pseudo code 8-3: Joining containers

The - operator eliminates from the first container any element found in the second container:

 a = [1, 2, 3, 2, 4] - [2, 5] \\ a = [1, 3, 4]
 b = a - 3 \\ b = [1, 4]

Pseudo code 8-4: Subtraction of containers

Note that containers involved in the - operation remain unchanged. In the second line of Pseudo
code 8-4, the container in variable a is unchanged.

Warning : when operator - eliminates all elements of a container, the returned value is
indeterminate (#IND) . The reserved word CONTAINER can be used in a test validation to
determine if the operation produced a container. In the following example nothing will be
displayed since the difference produces an indeterminate result (i.e. no resultant container):

Flowchart 8-2: CONTAINER type validation

8. Operators and predefined functions LARP Users Guide

108 Copyright © 2004-2008 Marco Lavoie

8.4 Predefined functions

LARP’s predefined functions are categorized according to the type of values on which they may
be applied:

1. mathematical functions, applicable to numerical values,

2. functions handling character strings, and

3. functions handling containers.

The following sections present functions in each category. For more information or to get the
invocation syntax of these functions, see Appendix C.

8.4.1 Predefined mathematical functions

Here are the mathematical constants and functions available in LARP:

Functions Descriptions Examples

ABSOLUTE Returns the absolute (i.e. positive)
of the given value.

ABSOLUTE(-6)

RANDOM Returns a floating or integer
number chosen at random (several
versions available).

RANDOM
RANDOM(11)
RANDOM(2.3, 15.0)

ARCTANGENT Returns tan-1 for the given value in
radians.

ARCTANGENT(0.0)

ROUND Returns the given value rounded to
the closest integer.

ROUND(12.6) returns 13

COSINUS Returns the cosine of given value
in radians.

COSINUS(1.5707963)

TOSTRING Converts to given value to a
character string.

TOSTRING(12.34)

EXP Returns the basis for natural
logarithm (e).

LOGE(EXP) returns 1

LOG10 Returns base 10 logarithm of the
given value.

LOG10(100) returns 2

LOGE Returns base e logarithm of the
given value.

LOGE(2.1)

MAXIMUM Returns the largest value among
those given (two values or more).

MAXIMUM(11.1, 12, 7)

MINIMUM Returns the smallest value among
those given (two values or more).

MINIMUM(11.1, 12, 7)

PI Returns the value of mathematical
constant Pi.

Area = PI * r ^ 2

CEILING Returns the smallest integer
greater or equal to the given value.

CEILING(12.1) returns 13

LARP Users Guide 8. Operators and predefined functions

Copyright © 2004-2008 Marco Lavoie 109

Functions Descriptions Examples

FLOOR Return the largest integer smaller
or equal to the given value.

FLOOR(12.1) returns 12

SQUAREROOT Returns the square root of the
given value.

SQUAREROOT(25) returns 5

SINUS Returns the sinus of given value in
radians.

SINUS(1.5707963)

Table 8-4: Predefined mathematical functions

8.4.2 Predefined string functions

LARP offers various predefined functions for handling character strings. These functions provide
the basic functionality for writing more sophisticated modules handling strings:

Functions Descriptions Example

COUNT Returns the number of characters
in a string (synonym of LENGTH).

COUNT("Hello") returns 5

TOCHARACTERS Converts a character string into a
container where each character is
an element.

TOCHARACTERS("Bye") returns
['B', 'y', 'e']

FORMAT Returns a character string
formatting a sequence of
arguments according to a format
string.

FORMAT("%5.2f", 3.1) returns
" 3.10"

LENGTH Returns the number of characters
in a string (synonym of COUNT).

LENGTH("Hello") returns 5

UPPERCASE Returns the given string with all
lowercase letters converted into
uppercases.

UPPERCASE("Hello") returns
"HELLO"

LOWERCASE Returns the given string with all
uppercase letters converted into
lowercases.

LOWERCASE("Hello") returns
"hello"

POSITION Returns the position of the first
string within the second string.

POSITION("cd","abcde")
returns 3

SUBSET Returns a subset of the given
string (the 2nd parameter indicates
the start position, and the 3rd
indicates the number of characters
to extract).

SUBSET("abcde", 2, 3)
returns "bcd"

Table 8-5: Predefined functions for handling charac ter strings

8. Operators and predefined functions LARP Users Guide

110 Copyright © 2004-2008 Marco Lavoie

8.4.3 Predefined container functions

LARP offers various predefined functions for handling containers:

Functions Description Examples

SIZE Returns the number of determinate
and indeterminate elements in a
container (see DESTROY
instruction).

SIZE([1, , 2,]) returns 4

COUNT Returns the number of determinate
elements in a container.

COUNT([1, , 2,]) returns2

TOCHARACTERS Recursively converts the given
container into another container
where each elements of the first
are divided into separate
characters in the second.

TOCHARACTERS(["ab",2])
returns ['a', 'b', '2']

TOSTRING Converts the elements of a
container into a single character
string.

TOSTRING([10, 20])
returns"1020"

MAXIMUM Returns the largest value among
the elements of a container.

MAXIMUM([11, 12, 7])

MINIMUM Returns the smallest value among
the elements of a container.

MINIMUM([11, 12, 7])

POSITION Returns the position of an element
in the given container.

POSITION(8,[1, 8, 5])
returns 2

SUBSET Returns a subset of the given
container (the 2nd parameter
indicates the start position, and the
3rd indicates the number of
elements to extract).

SUBSET([1, 4, 9, 5, 11],
2, 3) returns [4, 9, 5]

Table 8-6: Predefined functions for handling contai ners

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 111

9 Conditional structures
Algorithms presented in previous sections consist in a list of instructions to be executed
sequentially, from the Start instruction down to the End instruction.

Many problems solvable through programming require decisions to be made while executing their
algorithmic solution. A conditional structure is an instruction which introduces alternative
sequences of instructions in an algorithm.

LARP provides four conditional structures:

1. the IF structure,

2. the IF-ELSE structure,

3. the IF-ELSE-IF structure, and

4. the SELECTION structure.

In its simplest form (the IF structure), the pseudo code structure is composed of the reserved
words IF, THEN and ENDIF, a condition and an instructions sequence to be executed when the
condition is true. In a flowchart it consists of a conditional instruction containing the condition and
the instructions sequence along the True branch of the structure, depicting that it is executed
when the condition is true:

IF conditional structure

 IF condition THEN
 Instructions sequence
 ENDIF

Table 9-1: IF conditional structure

In the above pseudo code structure (at left in Table 9-1), the reserved word IF indicates the
beginning of conditional structure and the reserved word ENDIF indicates where it ends. In the
corresponding flowchart structure (at right in Table 9-1) the condition starts the conditional
structure and the convergence of the True and False branches ends the structure. Note that
LARP allows the True branch in a conditional structure to be positioned on right or left of the
condition.

Conditional structures are based on the evaluation of the condition which yields a true or false
result. The flow of execution depends on that result.

9. Conditional structures LARP Users Guide

112 Copyright © 2004-2008 Marco Lavoie

9.1 Conditions

A condition is a comparison. This phrase encompasses the essence of what is a condition. A
simple condition is made of three elements:

1. the first value,

2. a comparison operator, and

3. the second value.

Values may be of any type (numericals, character strings or containers) and may be expressed
explicitly as constants or implicitly as expressions to be evaluated. In order for a comparison to
make sense, compared values must be of the same type or of comparable types.

The comparison operator in a simple condition is called a relational operator. These operators are
used to compare the magnitude of two values.

A simple condition can also be a type validation, which are tests used to verify the type of a
value.The tested value may it be a constant or obtained from an expression.

Furthermore, simple conditions may be grouped together into a compound condition using logical
operators.

9.2 Relational operators

Relational operators in LARP are used to compare two values:

Operators Descriptions

< Lower than: a < b

<= Lower than or equal to: a <= b

> Greater than: a > b

>= Greater than or equal to: a >= b

= Equal to: a = b

!= Not equal to: a != b . The equivalent symbol <> is also recognized by LARP.

Table 9-2: Relational operators

Relational operators compare two values of comparable types. By comparable types we mean
values that can logically be compared. For example, while an integer value can be compared to a
float value, it is illogical to compare a float value to a container.

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 113

Here are examples of simple conditions:

 \\ READ two values
 WRITE "Enter two values: "
 READ a, b

 \\ Indicate the smallest of values read
 IF a < b THEN
 WRITE "Minimum = ", a
 ENDIF
 IF a >= b THEN
 WRITE "Minimum = ", b
 ENDIF

 \\ Check if one or both values are zero
 IF a*b = 0 THEN
 WRITE "At least one value is 0"
 WRITE "Please enter new values: "
 READ a, b
 ENDIF

Pseudo code 9-1: Simple conditions

As shown in the examples above, a simple condition may include expressions, and the sequence
of instructions within the conditional structure may consist of one or more instructions.

Note that relational operators may also be used to compare character strings or containers:

· Character strings are compared according to alphabetic order and ASCII coding. So,
"abc" < "b" , but "abc" > "B " .

· The equality of containers is assessed according to their elements. Comparisons as
recursives when container elements are themselves containers. Operators = and != are
the only relational operators applicable to containers.

Warning: relational operators cannot be chained. For instance, the condition 5 < a < 10 is invalid
in LARP (as in most programming languages). Logical operators must be used to express such
conditions.

9.3 Type validation

It is sometimes necessary to validate the type of a value before processing it. It is such the case
when a value entered by the user must be validated. LARP provides reserved words INTEGER,
FLOAT, STRING and CONTAINER which, when used along with the reserved word IS, validate
the type of the value obtained from evaluating a given expression:

9. Conditional structures LARP Users Guide

114 Copyright © 2004-2008 Marco Lavoie

Flowchart 9-1: Condition testing the type of value in a variable

Reserved words DETERMINATE and INDETERMINATE may also be used with reserved word IS
to test if a variable or a container element is determinate or not:

 IF Tab[1] IS INDETERMINATE THEN
 COMPRESS Tab
 ENDIF

Pseudo code 9-2: Condition testing if a value is in determinate

Note that LARP recognizes reserved words DEFINED and UNDEFINED as synonyms of
DETERMINATE and INDETERMINATE, respectively.

9.4 Logical operators

Logical operators bring together simple conditions into « super-condition ». Grouping conditions is
sometimes required to stipulate that multiple conditions must be satisfied in order to execute a
sequence of instructions. For instance, a compound condition is needed to express conditions
such as « the value must be greater than zero and lower than 100 » or « the color must be red or
green ». Logical operators allow to formulate compound conditions by joining simple conditions.

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 115

Three logical operators are available in LARP:

Operators Descriptions

 AND Both conditions must be satisfied: a > 0 AND a < 100

 OR At least one of the conditions must be satisfied: a < 1 OR a > 99

 ! Logical negation of a condition: !(a IS INTEGER) . Reserved word NOT is
equivalent.

Table 9-3: Logical operators

Note that the negation operator (!) is often used with parentheses to denote which condition is
reversed.

Unlike relational operators, logical operators can be used to chain a sequence of conditions into a
compound condition:

 \\ Read and validate a color
 WRITE "Enter a color: "
 READ color
 IF color="blue" OR color="white" OR color="red" THEN
 WRITE "Invalid color"
 ENDIF

Pseudo code 9-3: Compound conditions

9.5 Priority of operators

As discussed in the section on arithmetic operators, all operators in LARP have a priority level.
The priority of an operator determines the order of evaluation of components in an expression or
a condition. Table 9-4 presents LARP operators in increasing levels of priority; operators with
equal priority are listed on the same line:

Operators Descriptions

 OR Logical or

 AND Logical and

 NOT Logical negation (symbol ! is equivalent).

 <, <=, >, >=, =, != Relational operators

 +, - Addition and subtraction

 *, /, //, % Multiplication, division, integer division and modulo

 ^ Power

 - Arithmetic negation

Table 9-4: Priority of operators

Upon evaluating expressions or conditions, operator priorities may be circumvent using
parentheses.

9. Conditional structures LARP Users Guide

116 Copyright © 2004-2008 Marco Lavoie

Here is an example of the order of evaluation of a compound condition according to the priority of
involved operators:

! a+2 < 30 OR b-c%2 = 28 AND c^11 > 2000*c+1

Figure 9-1: Compound condition

This condition is equivalent to the following:

(! ((a+2) < 30)) OR ((((b-(c%2)) = 28) AND ((c^11) > ((2000*c)+1))))

Figure 9-2: Order of appreciation of the previous c ondition

Here is a graphical representation of the order in which operators are evaluated in the condition:

Figure 9-3: Graphical representation of the order i n which operators are evaluated

For educational purposes, animation may be used in step execution to visualize the impact of
operator priorities on the evaluation process of expressions and conditions.

IF and IF-ELSE structures
There are only two possible forms of IF structures: the structures on right of Table 9-5 is the
complete form, while the ones on left are the simple forms.

IF structure IF-ELSE structure

IF condition THEN
 Instructions sequence #1
ENDIF

IF condition THEN
 Instructions sequence #1
ELSE
 Instructions sequence #2
ENDIF

Table 9-5: Conditional structures IF and IF-ELSE

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 117

A condition is an expression composed of relational operators (it may also contain arithmetical
operators and logical operators) and its value is true or false. It can therefore be:

· a condition, or

· a type validation.

The two conditional structures presented in Table 9-5 are straightforward. When the flow of
execution reaches the conditional structure (i.e. the pseudo code line IF condition THEN, or the
flowchart condition box), LARP examines the value obtained from evaluating the condition. If the
condition is true, the Instructions sequence #1 is executed. This sequence of instructions may
consist of any number and any type of instructions. Once Instructions sequence #1 is executed,
LARP exits the conditional structure. In other words:

· Once the flow of execution reaches the ELSE reserved word in pseudo code, LARP
jumps directly to the next instruction after the ENDIF.

Once the flow of execution reaches the convergence point of branches in the flowchart
conditional structure, LARP exits the structure.

On the other hand, if the condition is false, the flow of execution jumps over Instructions
sequence #1 to the ELSE reserved word in pseudo code, and executes Instructions sequence
#2. In flowcharts, the flow of execution branches on the False edge of the structure.

 \\ IF structure
 IF a < b THEN
 WRITE "Minimum = ", a
 ENDSF

 \\ IF-ELSE structure
 IF a < b THEN
 WRITE "Minimum = ", a
 ELSE
 WRITE "Minimum = ", b
 ENDIF

Pseudo code 9-4: Conditional structures IF and IF-E LSE

The IF structure corresponds to the case when the false part of the structure is empty. Instead of
stating « else there is nothing to do », we simply do not write anything (i.e. no ELSE and no
Instructions sequence #2).

Flowchart 9-2: IF structure

Flowchart 9-3: IF-ELSE structure

9. Conditional structures LARP Users Guide

118 Copyright © 2004-2008 Marco Lavoie

Since LARP uses carriage returns to separate instructions in pseudo code, it is important to insert
line changes at proper locations in conditional structures. The following pseudo code structures
are invalid:

 \\ Erroneous syntax (missing change of line after THEN)
 IF a < b THEN WRITE "Minimum = ", a
 ENDIF

 \\ Erroneous syntax (extra change of line before T HEN)
 IF a < b
 THEN
 WRITE "Minimum = ", a
 ENDIF

Pseudo code 9-5: Invalid IF structures

Note that LARP’s graphical editor prevents the user from constructing ill-shaped conditional
structures.

9.7 Embedded IF-ELSE structures

Graphically, IF-ELSE structures may be visualized as railway switches: it opens way to one of two
different paths of instructions depending on a condition’s value. There are however situations
where two paths are not enough. For instance, an algorithm establishing the state of water
according to its temperature may have to choose among three possible answers (solid, liquid or
gaseous).

A first solution would be the following:

 WRITE "Temperature of water? "
 READ Temp
 IF Temp <= 0 THEN \\ Is it ice?
 WRITE "It's ice"
 ENDIF
 IF Temp > 0 AND Temp < 100 THEN \\ Is it liquid?
 WRITE "It's liquid"
 ENDIF
 IF Temp >= 100 THEN \\ Is it vapor?
 WRITE "It's vapor"
 ENDIF

Pseudo code 9-6: Sequence of related IF structures

Pseudo code 9-6 is rather laborious. Conditions are more or less alike, and the flow of execution
must examine three successive conditions all on the same topic, the temperature (i.e. the value of
variable Temp). It would be more rational to embed the conditional structures one within the
other:

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 119

 WRITE " Temperature of water? "
 READ Temp
 IF Temp <= 0 THEN \\ Is it ice?
 WRITE " It's ice "
 ELSE
 IF Temp > 0 AND Temp < 100 THEN \\ Is it liquid?
 WRITE " It's liquid "
 ELSE \\ It's therefore vapo r
 WRITE " It's vapor "
 ENDIF
 ENDIF

Pseudo code 9-7: Structures IF-ELSE embedded one in the other

Pseudo code 9-7 saves on the amount of source code: instead of having three conditions, we
only have two conditions. Furthermore, we made savings in terms of execution time on the new
algorithm: if the temperature is less than zero, Pseudo code 9-7 writes « It’s ice » and the flow of
execution jumps directly after the last ENDIF, without examining the other possibilities (which are
evidently false).

This second version of the algorithm produces exactly the same results as Pseudo code 9-6, but
more efficiently and in a more concise way. Embedded conditional structures are therefore an
elegant and efficient approach to simplify and optimize algorithms.

Conditional structures may also be embedded in flowcharts:

It is important to emphasize the danger of embedding conditional structures in pseudo code:
every IF...THEN must have a correspondig ENDIF. Missing or superfluous ENDIF keywords often

9. Conditional structures LARP Users Guide

120 Copyright © 2004-2008 Marco Lavoie

occur, but are easily spotted when pseudo code instructions are indented appropriately (i.e.
pushed to the right inside structures, as in Pseudo code 9-7).

9.8 IF-ELSE-IF structure

As described in the previous section, embedded conditional structures reduce execution times
since the flow of execution exits the structures as soon as one condition is satisfied and the
execution of the corresponding sequence of instructions has completed.

The advantage of embedded conditional structures is however offset by the complexity of the
algorithm when several conditions are involved. Pseudo code 9-8 is an example of embedded
conditional structures making the algorithm difficult to understand:

 WRITE "Temperature of water? "
 READ Temp
 IF Temp <= 0 THEN
 WRITE "It's frozen"
 SINON
 IF Temp <= 12 THEN
 WRITE "It's cold"
 ELSE
 IF Temp <= 25 THEN
 WRITE "It's warm"
 ELSE
 IF Temp <= 75 THEN
 WRITE "It's hot"
 ELSE
 IF Temp <= 100 THEN
 WRITE "It's very hot"
 ELSE
 WRITE "It's burning"
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF

Pseudo code 9-8: Embedded conditional structures

Note that such pseudo code is confusing. Authors often forget one or several ENDIF when
writing algorithms with such exceedingly embedded structures.

Deeply embedded conditional structures are also confusing in flowcharts. In Flowchart 9-4 the
embedded structure is very large and cannot fit within the visual area of the graphical editor
unless the view is zoomed out so far as to make the text unreadable on screen.

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 121

Flowchart 9-4: Embedded conditional structures

IF-ELSE-IF conditional structures simplify the use of embedded conditional structures in a context
where the flow of execution must leave the structure as soon as a condition is satisfied and the
corresponding sequence of instructions executed:

IF-ELSE-IF consitional structure

IF condition #1 THEN
 Instructions sequence #1
ELSE IF condition #2 THEN
 Instructions sequence #2
ELSE IF condition #3 THEN
 Instructions sequence #3
ELSE IF ...
 ...

ELSE IF condition #n THEN
 Instructions sequence #n
ELSE
 Instructions sequence #n+1
ENDIF

Table 9-6: IF-ELSE-IF conditional structure

9. Conditional structures LARP Users Guide

122 Copyright © 2004-2008 Marco Lavoie

This conditional structure is used when one and only one sequence of instructions must be
executed when a corresponding condition is true. This structure can be interpreted as follow:

· Execute Instructions sequence #1 if and only if condition #1 is true.

· Execute Instructions sequence #2 if and only if condition #1 is false and condition #2 is
true.

· Execute Instructions sequence #3 if and only if condition #1 and condition #2 are false,
but condition #3 is true.

...

· Execute Instructions sequence #i if and only if condition #1 to condition #i-1 are false, but
condition #i is true.

· Finally, if none of the conditions in the structure is true and the structure has an ELSE
part, Instructions sequence #n+1 is executed.

IF-ELSE-IF structures are inserted into flowcharts using two flowchart instructions:

Instructions Description

IF-ELSE-IF conditional structure: conditional structure consisting of one or
more sequences of instructions, one of which is to be executed according
to the value of a given conditions.

Branching for conditional structures: allows to add alternate sequences of
instructions in SELECT structure and IF-ELSE-IF conditional structure.

Table 9-7: Flowchart instructions required to build an IF-ELSE-IF structure

Here is the previous example rewritten using an IF-ELSE-IF conditional structure:

 WRITE "Temperature of water? "
 READ Temp
 IF Temp <= 0 THEN
 WRITE "It's frozen"
 ELSE IF Temp <= 12 THEN
 WRITE "It's cold"
 ELSE IF Temp <= 25 THEN
 WRITE "It's warm"
 ELSE IF Temp <= 75 THEN
 WRITE "It's hot"
 ELSE IF Temp <= 100 THEN
 WRITE "It's very hot"
 ELSE
 WRITE "It's burning"
 ENDIF

Pseudo code 9-9: IF-ELSE-IF conditional structure

In a IF-ELSE-IF pseudo code structure, the last sequence of instructions (ELSE Instructions
sequence #n+1) is optional. It is also the case in flowchart IF-ELSE-IF structures.

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 123

Flowchart 9-5: IF-ELSE-IF conditional structure

While both forms of conditional structures (embedded IF-ELSE and IF-ELSE-IF) are logically
equivalent, the latter is preferred because it avoids deep indentation of pseudo code to the right.
Such indentation often leaves most of the pseudo code line empty, forces the continuation of
lines (using $) and diminishes the legibility of the algorithm. The flowchart IF-ELSE-IF structure is
also preferred to its embedded counterpart because it’s more linear.

How LARP distinguish between IF-ELSE-IF conditional structures from embedded conditional
structures in pseudo code? When reserved words ELSE and IF follow each other on the same
line, then LARP assumes that they are part of a IF-ELSE-IF structure.

9.9 SELECT structure

An algorithm may contain a series of decisions in which a variable or an expression is separately
tested for each of a set of potential values, and a distinct instructions sequence is consequently
executed. LARP offers the SELECT structure for implementing such algorithmic structure.

The SELECT structure replaces the IF-ELSE-IF structure while making the algorithm more
readable. Consider the following pseudo code which uses an IF-ELSE-IF structure:

 READ Value1, Value2, Operator
 IF Operator = '+' THEN
 Result = Value1 + Value2
 ELSE IF Operator = '-' THEN
 Result = Value1 - Value2
 ELSE IF Operator = '*' OR Operator = 'x' THEN
 Result = Value1 * Value2
 ELSE IF Operator = '/' THEN
 Result = Value1 / Value2
 ELSE
 WRITE "Bad operator"
 ENDIF
 WRITE Result

Pseudo code 9-10: IF-ELSE-IF structure testing a si ngle variable

9. Conditional structures LARP Users Guide

124 Copyright © 2004-2008 Marco Lavoie

Now here is an equivalent pseudo code using a SELECT structure (using reserved words
SELECT, ELSE and ENDSELECT):

 READ Value1, Value2, Operator
 SELECT Operator
 '+' : Result = Value1 + Value2
 '-' : Result = Value1 - Value2
 '*', 'x' : Result = Value1 * Value2
 '/' : Result = Value1 / Value2
 ELSE
 Result = "Bad operator"
 ENDSELECT
 WRITE Result

Pseudo code 9-11: SELECT structure

In Pseudo code 9-11 the value of variable Operator is compared to each enumerated constant
thereafter. If a constant corresponds to the value in Operator , the instructions sequence
associated to this constant is executed.

If the value in Operator does not correspond to the first listed constant, it is compared with the
following one, and so on. The ELSE section allows the algorithm to take appropriate measures
when the tested variable (Operator) corresponds to none of the listed constants.

Note that

· the tested expression may only be compared with constants (ex: '+ '),

· more than one constant may be associated with the same instructions sequence (ex: '* ' ,
' x '), and

· the ELSE section is optional.

The flowchart SELECT structure is similar to its IF-ELSE-IF counterpart, except for the tested
expression which must be inserted at the entry point of the structure:

Flowchart 9-6: Example of SELECT structure

LARP Users Guide 9. Conditional structures

Copyright © 2004-2008 Marco Lavoie 125

Here is the general form of a SELECT structure:

SELECT structure

SELECT expression
 List of constants #1 : Instructions sequence #1
 List of constants #2 : Instructions sequence #2
 List of constants #3 : Instructions sequence #3

 ...

 List of constants #n : Instructions sequence #n
 ELSE
 Instructions sequence #n+1
ENDSELECT

Table 9-8: SELECT structure

where

· List of constants consists of one or more constants, separated by commas; do not forget
the colon (:) at the end of the list in pseudo code.

· Each Instructions sequence may contain any number of LARP instructions. In pseudo-
code the first instruction may be positioned after the : symbol, on the same line as the
corresponding List of constants.

· The ELSE section with its instructions sequence are optional. In flowcharts the
Instructions sequence #n+1 is also optional.

When executing a SELECT structure, LARP successively compares the value of expression with
constants found in each List of constants, starting with the first list (List of constant #1). When a
constant corresponding to the value of expression is found, its associated Instructions sequence
is executed and the flow of execution leaves the SELECT structure afterwards. If no constant
corresponding to the value of expression is found and the structure has an ELSE section, the
corresponding instructions (Instructions sequence #n+1) is executed.

If more than one List of constants hold a constant corresponding to the value of expression, only
the Instructions sequence corresponding to the first List of constants is executed since the flow of
execution leaves the SELECT structure afterwards.

9. Conditional structures LARP Users Guide

126 Copyright © 2004-2008 Marco Lavoie

As with the IF-ELSE-IF structure, SELECT structures are inserted into flowcharts using the
graphical editor with two flowchart instructions:

Instructions Descriptions

SELECT structure: conditional structure consisting of one or more
sequences of instructions, one of which is to be executed according to the
value of a given mathematical expression.

Branching for conditional structures: allows to add alternate sequences of
instructions in SELECT structure and IF-ELSE-IF conditional structure.

LARP Users Guide 10. Iterative structures

Copyright © 2004-2008 Marco Lavoie 127

10 Iterative structures
Algorithms frequently have to repeat a sequence of instructions a given number of times to carry
out their tasks; in fact, most algorithms exploit such repetitions. LARP provides three structures to
execute a sequence of instructions repeatedly; they are generally referred to as iterative
structures or loops:

1. WHILE structure

2. REPEAT-UNTIL structure

3. FOR structure

Iterative structures are based on the evaluation of a condition returning true or false. Repetition is
decided according to the value of that condition.

10.1 WHILE structure

In his simplest form (the WHILE structure) as presented in Table 10-1, an iterative structure in
pseudo code consists of reserved words WHILE, DO and ENDWHILE, a condition and a
instructions sequence to be executed while the condition remains true.

In flowchart form (see Table 10-1), the WHILE structure includes a condition in a six-sided box
followed by an instructions sequence along the edge labelled True. The False edge may be
oriented towards left or right of the condition. Note that the True edge returns to the condition,
illustrating the flow of execution returning to the condition once the execution of instructions
sequence is completed.

WHILE iterative structure

WHILE condition DO
 Instructions sequence
ENDWHILE

Table 10-1: WHILE iterative structure

In the pseudo code structure above, reserved word WHILE indicates where the iterative structure
begins, and reserved word ENDWHILE indicates where it ends. In the flowchart counterparts, the
condition box indicates where the structure starts while the bottom end of the False edge
indicates its end.

10. Iterative structures LARP Users Guide

128 Copyright © 2004-2008 Marco Lavoie

Iterative structures are based on the evaluation of a condition, which result is true or false; the
flow of execution is determined accordingly. In a WHILE structure, the instructions sequence is
repeatedly executed as long as the condition is satisfied (i.e. it returns True).

The following example uses a WHILE structure to add up values until the sum reaches or
exceeds 1000:

 Sum = 0
 WHILE Sum < 1000 DO
 READ Value
 Sum = Sum + Value
 ENDWHILE

Pseudo code 10-1: WHILE iterative structure

Flowchart 10-1: WHILE iterative structure

The condition in a WHILE structure is evaluated before each iteration (an iteration is one and only
one execution of the instructions sequence within the loop). The execution of such structure may
be so summed up as follows:

1. Evaluate condition

2. If it returns true then

2.1. Execute instructions sequence

2.2. Go back to step 1.

The condition must therefore be satisfied for the instructions sequence to be executed. As soon
as the condition becomes false (i.e. not satisfied anymore), the flow of execution exits the WHILE
structure and resume execution after the structure (passed the ENDWHILE reserved word in
pseudo code).

LARP Users Guide 10. Iterative structures

Copyright © 2004-2008 Marco Lavoie 129

A characteristic of the WHILE structure is the position of the condition at the beginning of the
structure. As such, the instructions sequence may not be executed at all if the condition is found
to be false upon entering the structure. In such scenario the flow of execution immediately exits
the structure without performing a single iteration.

Since iterative structures repeat a sequence of instructions multiple times, they are sometimes
referred to as repetitive structures. Both expressions are synonyms.

10.2 REPEAT-UNTIL structure

The REPEAT-UNTIL structure is similar to the WHILE structure. It involves executing repeatedly
an instructions sequence according to the value of a condition. However, REPEAT-UNTIL and
WHILE structures differs in two ways:

1. The WHILE structure executes the instructions sequence as long as the condition is
satisfied, while the REPEAT-UNTIL structure executes the instructions sequence as long
as the condition is not satisfied. In other words, the REPEAT-UNTIL structure iterates
until the condition becomes true.

2. The WHILE structure checks the condition before each iteration while the REPEAT-
UNTIL structure checks the condition after each iteration.

The main distinction between the two structures resides in the fact that, in the REPEAT-UNTIL
structure, the instructions sequence is executed at least once, without regards to the value of the
condition. This distinction is clearly highlighted by the location of the condition at the end of the
structure, as opposed to the WHILE structure in which the condition is located at the entry point of
the structure.

REPEAT-UNTIL iterative structure

REPEAT
 Instructions sequence
UNTIL condition

Table 10-2: REPEAT-UNTIL iterative structure

The REPEAT-UNTIL structure presented in Table 10-2 consists of reserved words REPEAT and
UNTIL, a condition and an instructions sequence to be executed until the condition becomes true
(in other words while it is false). In flowchart form the REPEAT-UNTIL structure includes a
condition in a six-sided box preceded by an instructions sequence. The False edge, depicting the
iteration, may be oriented on left or right of the condition. Note that the True edge exits the
structure, illustrating that flow of execution stops executing the instructions sequence once the
condition becomes true.

10. Iterative structures LARP Users Guide

130 Copyright © 2004-2008 Marco Lavoie

The following example uses a REPEAT-UNTIL structure to read and validate a positive value:

 REPEAT
 WRITE "Positive number?"
 READ Number
 UNTIL Number > 0

Pseudo code 10-2: REPEAT-UNTIL iterative structure

Flowchart 10-2: REPEAT-UNTIL iterative structure

Since at least one read is required, the REPEAT-UNTIL structure is preferable to the WHILE
structure because it provides an initial iteration before validation with the condition. The REPEAT-
UNTIL structure is generally preferred to the WHILE structure when variables on which depends
the condition are initialized within the loop, therefore requiring at least one iteration.

Note however that a WHILE structure may replace any REPEAT-UNTIL structure, at the expense
of additional instructions (in Pseudo code 10-3 an extra read operation must precede the loop):

 WRITE "Positive number?"
 READ Number
 WHILE Number <= 0 DO
 WRITE "Positive number?"
 READ Number
 ENDWHILE

Pseudo code 10-3: WHILE structure equivalent to the loop in Pseudo code 10-2

LARP Users Guide 10. Iterative structures

Copyright © 2004-2008 Marco Lavoie 131

10.3 FOR structure

The third iterative structure is more sophisticated than both previous ones (the WHILE and
REPEAT-UNTIL structures). The FOR structure has the following syntax:

FOR iterative structure

FOR variable = initial_value TO final_value STEP step_value DO
 Instructions sequence
ENDFOR

Table 10-3: FOR iterative structure

In the above pseudo code, word reserved FOR indicates the beginning of the structure and
reserved word ENDFOR indicates where it ends.

The FOR structure is commonly used when one needs to make a variable (identifier variable in
Table 10-3) vary in value from an initial value (identifier initial_value) up to a final value (identifier
final_value), while executing an instructions sequence for every value of this variable. Identifier
step_value indicates how much the variable must be incremented at the end of each iteration.

Here are more formal definitions of identifiers in Table 10-3:

· variable: variable which value varies from initial_value to final_value, updated by
step_value units after each iteration.

· initial_value: value of variable on its first iteration.

· final_value: value of variable on its last iteration.

· step_value: increment applied to variable after each iteration.

· Instructions sequence: instructions executed on each iteration. Variable may be used in
these instructions.

The step value may be omitted in a FOR structure. In such case, a default step value of 1 is
applied to variable. The variable used to control a FOR structure is commonly called an iteration
variable.

10. Iterative structures LARP Users Guide

132 Copyright © 2004-2008 Marco Lavoie

Here is a pseudo code example of a FOR structure. Suppose we want to display temperatures in
Fahrenheit corresponding to the first 20 Celsius values on a thermometer. Such listing of
temperatures may be produced using a WHILE structure:

 \\ Display temperatures from 0C up to 19C en Fahre nheit
 Celsius = 0
 WHILE Celsius <= 19 DO
 Fahrenheit = Celsius * 9/5 + 32
 WRITE Celsius, ' = ', Fahrenheit
 Celsius = Celsius + 1
 ENDWHILE

Pseudo code 10-4: Iterate from one value to the nex t with a WHILE structure

The above structure performs exactly 20 iterations, augmenting by 1 the value of variable
Celsius at the end of each iteration.

The FOR structure offers a more natural and compact syntax to express iterative structures
involving an iteration variable such as Celsius in Pseudo code 10-4:

 \\ Display temperatures from 0C up to 19C in Fahre nheit
 FOR Celsius = 0 TO 19 DO
 Fahrenheit = Celsius * 9/5 + 32
 WRITE Celsius, ' = ', Fahrenheit
 ENDFOR

Pseudo code 10-5: FOR iterative structure

In this structure, variable Celsius is initialized to 0 prior to the first iteration, then successively
incremented by 1 (since no step value is provided) at the end of each iteration. Variable
incremental is implicit (i.e. there is no need to explicitly increment the variable using an instruction
such as Celsius = Celsius + 1). When variable Celsius reaches 20, the flow of execution exits
the FOR structure and continue executing pseudo code after the ENDFOR.

Flowchart 10-3 presents the same algorithm as Pseudo code 10-5. The condition in the FOR
structure is significantly different from ones found in WHILE and REPEAT-UNTIL structures. All
condition elements found in a pseudo code FOR structure are represented in the condition
symbol of the flowchart FOR structure: initialization of the iteration variable upon entry (Celsius =
0), testing whether to proceed with the next iteration (Celsius in [0...19]) and updating the
iteration variable at the end of each iteration (Celsius = Celsius + 1). Edges within the flowchart
FOR structure clearly highlight the flow of execution within the structure:

1. Upon entering the structure, the initialization instruction (Celsius = 0) is executed once
and only once.

2. The iteration variable is validated according to the range of values it must successively
take (Celsius in [0...19]). If the variable’s value is within this range then

2.1 The two instructions within the loop are executed.

2.2 The iteration variable is updated (Celsius = Celsius + 1).

2.3 The flow of execution returns to step 2 in order to determine whether or not to
proceed with another iteration.

LARP Users Guide 10. Iterative structures

Copyright © 2004-2008 Marco Lavoie 133

Flowchart 10-3: FOR iterative structure

The option of specifying a step value within a FOR structure allows one to impose an increment
other than the default (which is 1). The following algorithm only converts even valued
temperatures from Celsius to Fahrenheit:

 \\ Display temperatures 0C, 2C, 4C, 6C ... up to 1 8C in Fahrenheit
 FOR Celsius = 0 TO 18 STEP 2 DO
 Fahrenheit = Celsius * 9/5 + 32
 WRITE Celsius, ' = ', Fahrenheit
 ENDFOR

Pseudo-code 10-6: FOR structure with step value oth er than 1

By default a FOR structure increments the value of its iteration variable by one unit after each
iteration. However when the given initial_value is superior to final_value, the iteration variable will
be automatically reduced by 1 at each iteration:

 \\ Display temperatures from 19C down to 0C in Fah renheit
 FOR Celsius = 19 TO 0 DO
 Fahrenheit = Celsius * 9/5 + 32
 WRITE Celsius, ' = ', Fahrenheit
 ENDFOR

Pseudo code 10-7: Backward iterations in a FOR stru cture

10. Iterative structures LARP Users Guide

134 Copyright © 2004-2008 Marco Lavoie

A negative step value may also be specified to reduce the iteration variable by more than one unit
at each iteration:

 \\ Display temperatures 18C, 16C, 14C ... down to 0C in Fahrenheit
 FOR Celsius = 18 TO 0 STEP –2 DO
 Fahrenheit = Celsius * 9/5 + 32
 WRITE Celsius, ' = ', Fahrenheit
 ENDFOR

Pseudo-code 10-8: Backward iterations in a FOR stru cture with negative step value

The value of the iteration variable (Celsius in previous examples) may be used in instructions
within the FOR structure, but may not be modified by these instructions. In the following example
instruction READ i is not allowed by LARP because it attempts to change the value of the
iteration variable i. Instruction WRITE Log(i * 100) is however permitted since it does not modify
variable i. It is also the case with Fahrenheit = Celsius * 9/5 + 32 in Pseudo-code 10-8: it does
not alter iteration variable Celsius .

 FOR i = 0 TO 10 DO
 WRITE Log(i * 100)
 READ i \\ not allowed
 ENDFOR

Pseudo code 10-9: Illegal FOR structure

Even though it is very practical, the FOR structure is not mandatory to programming languages
such as LARP. All loops in algorithms may be expressed with a WHILE structure. The key
reasons to use a FOR structure is to alleviate the job of programmers by automatically managing
iteration variables, as well as to produce more comprehensible algorithms (for example Pseudo
code 10-5 is easier to understand than its equivalent, Pseudo code 10-4). In other words, the
FOR structure is a special case of the WHILE structure.

Conceptually, the FOR structure is said to be an unconditional loop since the number of iterations
it will perform is predetermined and does not depend on instructions within the loop (since they
cannot modify the iteration variable). For example in Pseudo code 10-5 the number of iterations
to be performed is fixed (20 iterations), as well as in Pseudo-code 10-6 (10 iterations) and in
Pseudo code 10-7 (20 iterations). WHILE and REPEAT-UNTIL structures are called conditional
loops since the number of iterations such loop perform depends on the instructions within the
structure and cannot therefore be determined in advance. It is the case in Pseudo code 10-2 and
Pseudo code 10-3 where the value in variable Number is set within the loops (it is not therefore
an iteration variable).

Most traditional programming languages offer an iterative structure equivalent to LARP’s FOR
loop. For example C++ and Java have for loops which resemble LARP’s FOR structure, though
exhibiting a more complex syntax.

LARP Users Guide 11. Modules

Copyright © 2004-2008 Marco Lavoie 135

11 Modules
Modular programming is a technique used to create complex algorithms. It consists in splitting a
complex algorithm into smaller ones. Each small algorithm is called a module and carries out a
simple task. All modules within an algorithm cooperate in order to perform the algorithm’s overall
tasks.

Here are examples of tasks carried out by modules:

· Display a menu of options

· Show formatted results

· Compute data average

· Validate entered data

· Sort data

A module is identified by an unique name and consists of an instructions sequence, starting with
reserved word ENTER and ending with reserved word RETURN. The instructions sequence in a
module is executed when the name of module is encountered during execution of other modules.
The module is said to be invoked.

LARP supports three types of modules:

· Simple modules are not parametrized, accepting no argument during their invocation.

· Parameterized modules accept arguments during their invocation, allowing their
execution to be controlled by given parameter values.

· Modules with return value, when invoked, return a result to the invoking module. As
parameterized modules, they may accept arguments.

Modules help to structure complex algorithms, allowing to build modular and reusable sequences
of instructions. Modules are essentially « reusable pieces of algorithms ».

Managing modules in a LARP project is performed through the document browser and the top
menu. They provide commands to create and/or delete modules within a project.

11.1 Module names

 Modules in a LARP project must be named according to the following rules:

· The name of module must start with a letter (A to Z, a to z) or the underline character (_).

· The name of module can be made of lowercase letters, uppercase letters, digits (0 to 9)
and the underline character (_).

· The name of module should not correspond to a reserved word of LARP, such as
WRITE, END, IF and PI.

· LARP does not distinguish lowercase letters from its uppercase counterparts, so
MODULE_1, Module_1 and module_1 all refer to the same module.

11. Modules LARP Users Guide

136 Copyright © 2004-2008 Marco Lavoie

A new module can be added to a project in three ways:

· through the top menu using the command New » File , then selecting the type of the new
module,

· through the control panel button , or

· through the document browser’s contextual menu.

Prior to adding the new module to the project, LARP displays the following window which queries
the user for the type of module (pseudo code or flowchart) and its name:

Figure 11-1: Creating an auxiliary module

Note that no two modules within a single project may have the same name.

11.2 Main module

When an algorithm is split into several modules, one of them must be the main module. As
opposed to other modules (usually called auxiliary modules) which start with reserved word
ENTER and ends with RETURN, the main module starts with word reserved START and ends
with END:

 \\ Main module
 START
 WRITE "Hello"
 END

Pseudo code 11-1: Main module

A LARP project must contain one and only one main module since LARP starts executing an
algorithm at instruction START and ends its execution when it reaches the instruction END.
Therefore only the main module may contain instructions START and END. On the other hand, a

LARP Users Guide 11. Modules

Copyright © 2004-2008 Marco Lavoie 137

project may contain none to several auxiliary modules, which must all start with reserved word
ENTER and end with reserved word RETURN.

Flowchart 11-1: Main module

When creating a new project, LARP automatically creates the project’s main module (named
MAIN) with its START and END instructions.

11.3 Auxiliary modules

Simple modules (i.e. without parameters) are used to accomplish straightforward tasks such as
displaying menus for the user. Such modules consist of an instructions sequence between
reserved words ENTER and RETURN.

In a project, all modules other than the main module are called auxiliary modules. They usually
perform tasks requested by the main module, and sometimes by other auxiliary modules.

Here is an example of an auxiliary module displaying a menu:

 \\ Auxiliary module Menu
 ENTER
 WRITE "The menu is"
 WRITE " 1 - Read the record"
 WRITE " 2 – Save the record"
 WRITE " 3 – Display the record"
 WRITE " 4 – Modify the record"
 WRITE " 5 - Quit"
 RETURN

Pseudo code 11-2: Auxiliary module

The above module, called Menu, executes its instructions sequentially, from ENTER through
RETURN. To execute it, a module (usually another module in the project) invoke the targeted
module by its name, preceded by the reserved word CALL :

 \\ Main module
 START
 REPEAT \\ Display the menu
 CALL Menu
 QUERY "Command? ", Command
 UNTIL Command = 5
 END

Pseudo code 11-3: Invoking an auxiliary module

11. Modules LARP Users Guide

138 Copyright © 2004-2008 Marco Lavoie

In the main module above, the simple module Menu is called (i.e. invoked) to display the menu at
every iteration of the REPEAT-UNTIL loop. All instructions in Menu are executed every time the
module is invoked. The following REQUEST instruction is executed after each call to Menu.

The resulting outputs in the execution console are displayed in Figure 11-2, where the user inputs
values 1 and 5 for the main module’s REQUEST instruction:

 The menu is
 1 - Read the record
 2 – Save the record
 3 – Display the record
 4 – Modify the record
 5 - Quit
 Command? 1
 The menu is
 1 - Read the record
 2 – Save the record
 3 – Display the record
 4 – Modify the record
 5 - Quit
 Command? 5

Figure 11-2: Outputs from auxiliary module Menu

Obviously the main module in Pseudo code 11-3 is incomplete since no action is undertaken
when the user inputs commands 1 to 5.

In LARP, auxiliary modules may also be built as flowcharts. The following module displays the
current date formatted as MM/DD/YYYY:

Flowchart 11-2: Simple auxiliary module as flowchar t

The auxiliary module in Flowchart 11-2 may be invoked from a main module written as pseudo
code or as flowchart. Note that there is a flowchart instruction specially defined for invoking
auxiliary modules:

LARP Users Guide 11. Modules

Copyright © 2004-2008 Marco Lavoie 139

Flowchart 11-3: Flowchart invoking an auxiliary mod ule

11.4 Local variables

A module can use its own variables to perform its tasks. These variables belong exclusively to
module and are not shared with other modules in the project. They are called local variables
since they are locally accessible by a single module.

Local variables are accessible anywhere between reserved words ENTER and RETURN of an
auxiliary module, or START and END of the main module. When two or more modules use the
same name for a local variable, these variables are distinct. The following example illustrates this
independence:

 \\ Main module
 START
 Value = 1
 CALL Module_A
 WRITE Value \\ Display 1 as result
 END

 \\ Auxiliary module Module_A
 ENTER
 Value = 2
 RETURN

Pseudo code 11-4: Local variables

Even if both modules use a variable named Value, the two variables are distinct. The variable
Value in the main module is not modified when auxiliary module Module_A is invoked.

The only way for two modules to share data through variables is by using parameters.

11.5 Auxiliary module parameters

Auxiliary modules may receive values, called parameters, provided when they are invoked (i.e.
called) by other modules. Parameters allow the invoking module (i.e. module containing the
CALL instruction) to provide data to the invoked module (i.e. module targeted by the CALL
instruction).

The parameters of an auxiliary module allow the invoking module to « configure » the execution
of the invoked module according to one or several values.

11. Modules LARP Users Guide

140 Copyright © 2004-2008 Marco Lavoie

LARP offers two types of parameters:

1. Value parameters: the invoking module may transmit values to the invoked module
through these parameters, but the invoked module cannot transmit results to the invoking
module through these parameters. Auxiliary module parameters are value parameters by
default.

2. Reference parameters: the invoking module may transmit values to the invoked module
through these parameters, and the invoked module can transmit back results to the
invoking module through these same parameters. A parameter is identified as reference
parameter by preceding its name with reserved word REFERENCE in the auxiliary
module header.

The following figure illustrates the transfer of data through each type of parameters between two
modules, one module (Module_A) invoking the other (Module_B):

Figure 11-3: Transfer of data through parameters

11.5.1 Parameter declarations in module header

Parameters of an auxiliary module are variables listed to the right of reserved word ENTER in the
module’s first instruction. When more than one parameter are listed, they are separated with
commas. In the following example (Pseudo code 11-5 and Flowchart 11-4) V1 and V2 are
parameters of the module Addition :

 \\ Auxiliary module Addition
 ENTER V1, V2
 Result = V1 + V2
 WRITE "Sum of", V1, "and", V2, "is", Result
 RETURN

Pseudo code 11-5: Auxiliary module with parameters

LARP Users Guide 11. Modules

Copyright © 2004-2008 Marco Lavoie 141

Flowchart 11-4: Auxiliary module with parameters

Parameters in an auxiliary module are variables which are to receive values provided when the
module is invoked. Values provided through module calls are called arguments and must be
listed within parentheses following the module’s name in the CALL instruction:

 \\ Main module
 START
 QUERY "Enter two values: ", N1, N2
 CALL Addition(N1, N2)
 END

Pseudo code 11-6: Invoking an auxiliary module with arguments

Flowchart 11-5: Invoking an auxiliary module with a rguments

When module Addition is invoked in Pseudo code 11-6 and Flowchart 11-5, values in arguments
N1 and N2 are respectively copied into the invoked module’s parameters V1 and V2 (value of N1

11. Modules LARP Users Guide

142 Copyright © 2004-2008 Marco Lavoie

is copied in V1 and value of N2 is copied in V2). Since parameters are to receive values provided
by arguments, auxiliary module parameters must be variables.

By default, parameters enumerated in a module’s ENTER instruction are said to be value
parameters since they are to receive values from arguments. Alternatively, a parameter may be
designated as reference parameter by preceding its name with reserved word REFERENCE in
the ENTER instruction:

 \\ Auxiliary module Swap
 ENTER REFERENCE V1, REFERENCE V2
 Temp = V1
 V1 = V2
 V2 = Temp
 RETURN

Pseudo code 11-7: Defining reference parameters

Flowchart 11-6: Defining reference parameters

The REFERENCE designator only applies to the single parameter following the reserved word. It
must therefore be repeated before each reference parameter in ENTER instructions.

Reference parameters allow the invoked module to return results to the invoking module through
the corresponding arguments. For example when a module executes CALL Swap(N1, N2) , the
Swap module (Pseudo code 11-7) actually transposes values in arguments N1 and N2. For more
information on reference parameters see section 11.5.3.

Note that main modules cannot have parameters.

11.5.2 Value parameters

When arguments in a module call are variables, the invoked module works with a copy of each
variable provided as argument, even if both the argument variable and the parameter variable
have the same name. The argument variable is therefore not modified by the module. In other
words, the invoked module may modify its parameter variable but the corresponding argument
variable will not be changed accordingly.

The following example clearly illustrates this independence of arguments from their
corresponding parameter in a module call:

 \\ Auxiliary module WithoutChange
 ENTER Letter, Number
 WRITE Letter, Number \\ Display B and 12 (see call)
 Letter = 'A'
 Number = 32
 WRITE Letter, Number \\ Display A and 22
 RETURN

LARP Users Guide 11. Modules

Copyright © 2004-2008 Marco Lavoie 143

 \\ Main module
 START
 Letter = 'B'
 Number = 12
 WRITE Letter, Number \\ Display B a nd 12
 CALL WithoutChange(Letter, Number)
 WRITE Letter, Number \\ Display B an d 12
 END

Pseudo code 11-8: Call by value through value param eters

In the above main module, variables Letter and Number are not changed by the call to auxiliary
module WithoutChange , even if the arguments and their corresponding parameter have identical
names.

When an invoked module receives values provided through arguments but cannot change the
content of these arguments, its parameters are said to be value parameters. In technical literature
the process of providing values to a module through its parameters is named call by value. By
default module parameters are value parameters in LARP.

Since an argument is independent from its corresponding value parameter, il may be something
else than a variable, such as a constant or the result of an expression:

Flowchart 11-7: Call by value through value paramet ers

In this example the first argument is a constant and the second is an expression.
As opposed to value parameters which may correspond to variables or expressions as
arguments, reference parameters may only correspond to arguments which are variables.

11.5.3 Reference parameters

When a parameter listed in an auxiliary module’s ENTER instruction is preceded with reserved
word REFERENCE, it is said to be a reference parameter. As opposed to the value parameter
which receives the value of its corresponding argument from the CALL instruction, the reference
parameter refers to the variable provided as argument in the CALL instruction, even if the
argument variable is named differently than the parameter variable.

11. Modules LARP Users Guide

144 Copyright © 2004-2008 Marco Lavoie

This distinction between value and reference parameters is best explained through an example.
Consider the two auxiliary modules presented in Pseudo code 11-9: both modules have identical
pseudo code instructions except for parameter declarations: Swap_1 has value parameters while
Swap_2 has reference parameters.

 \\ Auxiliary module Swap_1
 ENTER V1, V2
 Temp = V1
 V1 = V2
 V2 = Temp
 RETURN

 \\ Auxiliary module Swap_2
 ENTER REFERENCE V1, REFERENCE V2
 Temp = V1
 V1 = V2
 V2 = Temp
 RETURN

Pseudo code 11-9: Declaring value and reference par ameters

The following main module calls both auxiliary modules presented in Pseudo code 11-9. While
the call to Swap_1 does not modify the content of arguments N1 and N2, the call to Swap_2
does modify both variables (their values are actually swapped):

 \\ Main module
 START
 N1 = 10
 N2 = 20

 CALL Swap_1(N1, N2)
 WRITE N1, N2 \\ Displays 10 20

 CALL Swap_2(N1, N2)
 WRITE N1, N2 \\ Displays 20 10
 END

Pseudo code 11-10: Main module

Since auxiliary module Swap_2 uses reference parameters, V1 and V2 are in fact synonyms of
argument variables N1 and N2, respectively. Thus when Swap_2 assigns a new value to V1, it
actually modifies the value of variable N1 in the main module. The case also applies respectively
to reference parameter V2 and argument variable N2. This relationship between Swap_2’s
reference parameters (V1 and V2) and the variables provided as arguments when the module is
invoked (N1 and N2) does not exist when Swap_1 is invoked since the latter uses value
parameters: the values of arguments (in this case values in N1 and N2) are copied into value
parameters V1 and V2; when module Swap_1 assign new values to its parameters V1 and V2,
their corresponding argument variables (N1 and N2) are not affected.

This relationship between reference parameters and their corresponding arguments imposes a
major restriction on arguments : the argument corresponding to a reference parameter must be a
variable. In fact, since the reference parameter is a variable referring to its corresponding
argument in the module call, that argument must also be a variable in order to receive values
potentially assigned to the reference parameter by the invoked module. This restriction does not
apply to value parameters since they only receive argument values provided through calls but do
not maintain a relationship with these arguments while the auxiliary module is executed.

LARP Users Guide 11. Modules

Copyright © 2004-2008 Marco Lavoie 145

Reference parameters are identified with reserved word REFERENCE in an auxiliary module
header instruction ENTER, as illustrated in Swap_2 (Pseudo code 11-9). The same applies to
flowchart auxiliary modules:

Flowchart 11-8: Declaring reference parameters

In technical literature the relationship between reference parameters and their corresponding
arguments is named call by reference.

11.6 Modules with a return value

Auxiliary modules usually accept data through their parameters during execution. Modules with a
return value may also accept arguments, but have the additional feature of returning a result
through their RETURN instruction when invoked. Modules with return value are used when
complex computations must return a result, such as complex mathematical operations or reading
a selection from a displayed menu.

The auxiliary module in Flowchart 11-9 calculates and returns through its return value the factorial
of its parameter. The factorial of value n is defined as the product of sequence 1 x 2 x 3 x … x n:

11. Modules LARP Users Guide

146 Copyright © 2004-2008 Marco Lavoie

Flowchart 11-9: Auxiliary module with return value

The return value of a module is specified at the end of its RETURN instruction. The value may be
the result of an expression: RETURN I+1. There must however be only one return value:
RETURN I, I+1 is incorrect, but RETURN [I, I+1] isn’t since a single container is returned.

Here is another example of auxiliary module with return value. This module displays a menu and
reads the user’s selection until a valid command is entered, then finally returns that command:

 \\ Auxiliary module Menu
 ENTER
 REPEAT
 WRITE "The menu is"
 WRITE " 1 - Factorial"
 WRITE " 2 - Addition"
 WRITE " 3 - Quit"
 READ Command
 UNTIL Command >= 1 AND Command <= 3
 RETURN Command

Pseudo code 11-11: Module reading a command based o n a menu

LARP Users Guide 11. Modules

Copyright © 2004-2008 Marco Lavoie 147

When the above module is invoked, the returned value may be recovered in a variable of the
calling module through assignment. It may also be directed to another LARP instruction, as
depicted in the following main module:

 \\ Main module
 START
 Operation = CALL Menu
 IF Operation = 1 THEN
 READ N
 WRITE CALL Factorial(N)
 ELSE IF Operation = 2 THEN
 READ N1, N2
 WRITE N1+N2
 ENDIF
 END

Pseudo code 11-12: Invoking a module with return va lue

An auxiliary module may only return one result through its return value. However multiple results
may be returned by a module through reference parameters.

11.7 Alternate call syntax

An auxiliary module is usually invoked with the CALL instruction. However LARP also allows to
invoke a module without reserved word CALL , as shown in Pseudo code 11-3:

 \\ Main module
 START
 Operation = Menu // Invoking Menu module
 IF Operation = 1 THEN
 READ N
 WRITE Factorial(N) // Invoking Factorial module
 ELSE IF Operation = 2 THEN
 READ N1, N2
 WRITE N1+N2
 ENDIF
 END

Pseudo code 11-13: Alternate syntax for invoking au xiliary modules

To improve legibility it is recommended to use the reserved word CALL when invoking a module
without return value, but to avoid using it when invoking a module returning a result. In the
following example (Flowchart 11-10) the second call constitutes a more « elegant » instruction
than the first one:

11. Modules LARP Users Guide

148 Copyright © 2004-2008 Marco Lavoie

Flowchart 11-10: Examples of alternate call syntax

Furthermore, the second call syntax corresponds to how LARP’s predefined functions are
invoked, such are SQUAREROOT:

 \\ Main module
 START
 READ N
 Result = SQUAREROOT(N) / Factorial(N)
 END

Pseudo code 11-14: Invoking predefined functions

LARP Users Guide 12. Files and input/output buffers

Copyright © 2004-2008 Marco Lavoie 149

12 Files and input/output buffers
By default, an algorithm reads data through the keyboard and produces results in the execution
console (i.e. the screen) when executing. The keyboard (for inputs) and the execution console
(for outputs) are said to be de standard input/output interfaces in LARP.

In some situations however, an algorithm must process data from sources others than the
keyboard. This data is generally stored in documents external to the algorithm. In other cases, the
algorithm must store results in a permanent external document where they will not be lost as it is
the case when results are displayed in the execution console, which is closed once the execution
ends.

LARP supports two external sources of information:

· Input/output buffers: these documents are data storage integrated to a LARP project.
They allow an algorithm to read and/or write directly in a document inserted into LARP
project. As for modules, input/output buffers are identified by an unique name and listed
in the document browser.

· Files: files are data storage generally located on the computer’s hard disk (or on any
hardware device accessible through the computer’s file system). Files are identified with
a unique name in the file system of the computer running LARP.

An algorithm reading data or writing results in a file or an input/output buffer is said to perform
input-output operations. Such operations are handled through input/output channels. In LARP,
information processed through an input/output channel is presented in textual form (i.e. a
sequence of characters) in the targeted document. An input/output channel may therefore be
viewed as a sequence of characters (such as the keyboard which produces characters and the
execution console which displays characters). Input/output channels are manipulated in an
algorithm through channel numbers.

12.1 Input/output buffers

A LARP project has a single main module and perhaps one or several auxiliary modules. LARP
also allows a project to have « data modules », commonly called input/output buffers. Input/output
buffers are accessible through the document browser (see Figure 12-1) in LARP’s development
environment.

Input/output buffers are created the same way auxiliary modules are:

· through the File » New… or Project » New... commands in the top menu, or

· through the document browser’s contextual menu, displayed when clicking the right
mouse button on the browser.

Rules governing how input/output buffers are named are the same as for module.

Once an input/output buffer is created, the user can insert data in it using the textual editor. The
algorithm may then read and write data in a buffer using READ and WRITE instructions. QUERY
instructions cannot however be used to access input/output buffers or files.

Important : input/output buffers can only be created or deleted by the user through LARP’s
development environment. It is not possible for an algorithm to create a new buffer in the project
or destroy an existing one during execution.

12. Files and input/output buffers LARP Users Guide

150 Copyright © 2004-2008 Marco Lavoie

Figure 12-1: Input/output buffers in a project

12.2 Files

As with input/output buffers, LARP can read data or write results using files managed by the
computer’s operating system. Here are the distinctions between input/output buffers and files:

· Input/output buffers are managed by LARP while files are managed by the operating
system of the computer running LARP. This explains why files are not listed in LARP’s
document browser along with input/output buffers.

· In an algorithm, an input/output buffer is identified by its name. Along with its name, a file
must also be identified by the path leading to the directory where it is located within the
computer’s file system. To open a file an algorithm must therefore provide both its name
and the path to its directory.

· Any input/output buffer used in an algorithm must be created prior to the algorithm’s
execution through LARP’s development environment. A file can be implicitly created by
an algorithm during its execution.

· An input/output buffer is not accessible outside the development environment of LARP.
Files are however accessible with any software able to read text files. Therefore a file
created with another software may be read by a LARP algorithm, and a file created by a
LARP algorithm may be read by other software. This is not case with input/output buffers.
Note however that LARP’s development environment can convert input/output buffers
into files (with the Project » I/O Buffers » Export command accessible through the top
menu), and vice versa (through the Project » I/O Buffers » Import command).

Another major distinction between files and input/output buffers is in how each is opened by the
algorithm using the OPEN instruction.

LARP Users Guide 12. Files and input/output buffers

Copyright © 2004-2008 Marco Lavoie 151

12.3 Input/output channels

Referencing a document (i.e. an input/output buffer or a file) in a LARP algorithm requires using
input/output channels. LARP associates a number to every opened document. During its
execution an algorithm uses this number to refer to the document. These associated numbers are
called input/output channels.

LARP provides 256 input/output channels, numbered 1 through 256. An algorithm can therefore
access up to 256 documents simultaneously, input/output buffers and/or files. An input/output
channel is associated to a document using an OPEN instruction; this association is terminated
when the document is closed (using the CLOSE instruction). An input/output channel cannot be
associated simultaneously to more than one opened document. Likewise, two input/output
channels cannot be associated simultaneously to a single document. Any violation in these
restrictions automatically terminates the execution of the algorithm.

The use of input/output channels in algorithms is well illustrated in the following sections.

12.3.1 Opening a document

The OPEN instruction opens a document so it can be accessed by the algorithm during
execution. This instruction allows:

· to assign an input/output channel to a file or an input/output buffer, and

· to specify the access mode to the input/output channel.

An input/output buffer or a file can be associated with no more than one channel at a time, and it
remains associated with the channel until it is closed.

Except for assigning a channel to a document (with the OPEN instruction), LARP makes no
distinction between accessing an input/output buffer or a file since instructions manipulating
channels in LARP (READ, WRITE, CLOSE, …) use the input/output channel as reference to the
opened document.

12.3.2 Opening and input/output buffer

By default, the OPEN instruction associates an existing input/output buffer to the specified
input/output channel:

 \\ Open an input/output buffer in read mode
 OPEN "DATA" ON 3 IN READMODE

Pseudo code 12-1: Opening an input/output buffer

The above instruction assigns channel 3 to the input/output buffer called DATA in order to read
its contents.

LARP assumes an OPEN instruction targets an input/output buffer. The specified document may
be explicitly designated as input/output buffer using reserved word BUFFER. The following
flowchart instruction performs the same operation as the instruction in Pseudo code 12-1:

12. Files and input/output buffers LARP Users Guide

152 Copyright © 2004-2008 Marco Lavoie

Flowchart 12-1: Using reserved word BUFFER

Note that a sequential flowchart instruction is used to open documents (input/output buffers and
files) in flowchart modules.

As mentioned previously, multiple channels may not be simultaneously assigned to a single
buffer. Reciprocally, multiple input/output buffers may not be simultaneously associated to the
same channel:

 \\ Open an input/output buffer in read mode
 OPEN "DATA" ON 3 IN READMODE
 OPEN "DATA" ON 4 IN READMODE \\ Error: document already
 \\ associ ated with channel 3
 OPEN "DATA_2" ON 3 IN READMODE \\ Error: channel 3 not available

Pseudo code 12-2: Invalid OPEN instructions

It is important to remember that an algorithm cannot create input/output buffers during its
execution. A LARP project must therefore have all its required input/output buffers created prior to
the execution of its algorithm. The development environment provides commands to manage
input/output buffers within a project.

All input/output buffers created in a LARP project, as well as their contents, are saved along with
the modules in the project file whenever the project is saved.

12.3.3 Opening a file

Accessing files in an algorithm is similar to accessing input/output buffers, using reserved word
FILE replacing BUFFER in the OPEN instruction:

 \\ Open a file in read mode
 OPEN FILE "C:\\DATA.TXT" ON 3 IN READMODE

Pseudo code 12-3: Opening a file

The above pseudo code opens for reading the file named DATA.TXT, located in the directory C:\.
The location of a file in the computer’s file system is indicated with the path to its directory, using
backslashes (\\) to walk through the hierarchy of directories in the file system. The double
backslash is the escape sequence representing a single backslash (\).

If no directory path is provided along with the file name, LARP assumes the file is located in the
current directory (usually the directory where the current LARP project is saved). However, since
there are exceptions in this rule, it is recommended to always precede the name of a file with the
complete path to its directory.

LARP may fail to open a file for multiple reasons:

· The file does not exist: the algorithm attempts to open a nonexistent file for reading.

· The file is already opened: the algorithm attempts to open a file which is already
opened by the algorithm or by another running application.

LARP Users Guide 12. Files and input/output buffers

Copyright © 2004-2008 Marco Lavoie 153

· The input/output channel is not available: the algorithm attempts to open a file on an
input/output channel already associated with another opened document.

· The file name is invalid: the specified file name is invalid (the specified directory may
not exist, the file name may contain characters unsupported by the Windows ® file
system, or the supporting hardware media may malfunction or be disabled).

When a file cannot be opened, LARP interrupts execution of the algorithm and displays an
explanatory error message.

12.3.4 Access modes

When opening an input/output buffer or a file, an access mode must be specified:

Flowchart 12-2: Specifying access mode to a documen t

Three access modes are supported in LARP:

· READMODE: allows to read the document contents using READ instructions. If the
document does not exist, the algorithm’s execution is interrupted.

· WRITEMODE: allows to write results to the document using WRITE instructions. Any
previous contents in the targeted document is erased. If the document is a file which
does not exist, it is created. If the document is a nonexistent input/output buffer, the
algorithm’s execution is interrupted.

· APPENDMODE: allows to write results at the end of the document using WRITE
instructions. Any previous contents in the targeted document is retained. If the document
is a file which does not exist, it is created. If the document is a nonexistent input/output
buffer, the execution of the algorithm is interrupted.

The main distinction between WRITEMODE and APPENDMODE is related to prior contents of
documents:

· Opening an input/output buffer or a file in WRITEMODE automatically clears any
previous contents of that document (i.e. if the document already exists, its content is
erased).

· Opening an input/output buffer or a file in APPENDMODE preserves previous contents,
any subsequent WRITE instruction appending outputs at the end of that contents.

Read instructions (READ) are exclusively allowed on input/output channels associated to
documents opened in READMODE. Similarly, write instructions (WRITE) are exclusively allowed
on input/output channels associated to documents opened in WRITEMODE or APPENDMODE.
Any invalid read or write instruction on an input/output channel automatically stops execution of
the algorithm with an appropriate error message displayed.

12. Files and input/output buffers LARP Users Guide

154 Copyright © 2004-2008 Marco Lavoie

12.3.5 Closing an input/output channel

Every input/output buffer or file opened by the algorithm must be closed before execution ends.
The instruction for closing documents associated to input/output channels is CLOSE:

 OPEN "DATA" ON 3 IN READMODE
 CLOSE 3

Pseudo code 12-4: Closing an input/output buffer or a file

Here are the rules related to closing documents in an algorithm:

· Any opened document must be closed. If an algorithm reaches the end of its execution
without all opened input/output buffers and files having been closed with the CLOSE
instruction, a warning message is displayed in the message panel and all remaining
opened documents are automatically closed by LARP.

· The CLOSE instruction makes no distinction among access modes. Channels opened in
READMODE, WRITEMODE and APPENDMODE are all closed the same way.

· An opened document must only be closed once. A second CLOSE instruction applied to
the same channel interrupts the execution of the algorithm.

· A CLOSE instruction involving a disabled input/output channel (for example a channel
not associated with an input/output buffer or a file) causes the algorithm to stop
executing.

A CLOSE instruction may close multiple input/output channels at once. They must be
enumerated using commas:

Flowchart 12-3: Closing multiple input/output chann els at once

12.4 Inputs through input/output channels

Reading data from an input/output buffer or a file is accomplished through the input/output
channel associated with the document upon opening:

 OPEN "DATA" ON 3 IN READMODE
 READ Name, Number, Salary FROM 3

Pseudo code 12-5: Reading from a document using an input/output channel

The syntax for the READ instruction using an input/output channel is analogous to its syntax for
reading from the keyboard; however the targeted input/output channel must be appended to the
instruction using reserved word FROM in pseudo code, or specified in the designated field in the
flowchart instruction edit window:

LARP Users Guide 12. Files and input/output buffers

Copyright © 2004-2008 Marco Lavoie 155

Figure 12-2: Specifying a channel number in a flowc hart READ instruction

Before attempting to read a document’s contents, an input/output channel must be associated to
the document opened in READMODE. Any attempt to read from an input/output channel
associated to a document opened in WRITEMODE or APPENDMODE immediately interrupts
execution of the algorithm.

Similarly to reading from the keyboard, READ instructions using input/output channels are subject
to the active separator.

12.5 Outputs through input/output channels

Writing data to an input/output buffer or a file is accomplished through the input/output channel
associated with the document upon opening:

Flowchart 12-4: Writing in a document using an inpu t/output channel

The syntax for the WRITE instruction using an input/output channel is analogous in its syntax for
writing to the execution console; however the targeted input/output channel must be appended to
the instruction using reserved word IN in pseudo code, or specified in the designated field in the
flowchart instruction edit window:

12. Files and input/output buffers LARP Users Guide

156 Copyright © 2004-2008 Marco Lavoie

Figure 12-3: Specifying a channel number in a flowc hart WRITE instruction

Before writing to a document, the input/output channel must be associated with the document
opened in WRITEMODE or APPENDMODE. Any attempt to write to an input/output channel
associated with a document opened in READMODE immediately interrupts execution of the
algorithm.

Similarly to writing to the execution console, WRITE instructions using input/output channels are
subject to the active separator.

12.6 Detecting end of content through input/output channels

Since input/output buffers and files contain limited amounts of data, algorithms often need to
verify if an input operation has reached the end of the document. The predefined function
ENDOFCONTENT, when applied to an input/output channel in the condition of a conditional
structure or an iterative structure, returns true when the end of the document is reached:

 Sum = 0
 OPEN "DATA" ON 3 IN READMODE
 REPEAT
 READ Value FROM 3
 Sum = Sum + Value
 UNTIL ENDOFCONTENT(3)
 CLOSE 3
 WRITE Sum

Pseudo code 12-6: Detecting the end of a document w hen reading

The predefined function ENDOFCONTENT may only be applied to input/output channels
accessible in READMODE. Invoking ENDOFCONTENT on an input/output channel associated
with a document opened in WRITEMODE or APPENDMODE immediately interrupts execution of
the algorithm.

ENDOFCONTENT is not applicable to the keyboard since no input/output channel may be
associated with it. The keyboard cannot obviously run out of content!

LARP Users Guide Appendix A - Number co

Copyright © 2004-2008 Marco Lavoie 157

Appendix A - Number coding
Computers do arithmetic calculations differently than humans. While we calculate with decimal
numbers (base10, with digits 0 through 9), computers calculate with binary numbers (base 2, with
digits 0 and 1).

A.1 Why are computers binary?

Although computers are able to deal with text, play music and videos, or play computer games, in
fact they are only capable of doing a single thing: process numbers. Computers are only very
efficient adding devices.

Computers represent and manipulate text, sound, pictures and video as numbers. We say they
manipulate binary information. Binary information is an information unit that can only have two
states: active / inactive, or on / off. This representation is imposed by the physical devices storing
and processing information. Since these devices work with electricity, the presence or absence of
current in a transistor is used to represent a unit of information.

Computers represent binary information, whatever the physical support, as 1’s and 0’s. They
therefore use digits 0 and 1 as mathematical base (contrary to humans who use digits 0 through
9). In spite of this restriction, computers are able of perform computations as complex as the ones
humans can do. In fact, the computing speed of computers widely compensates for their
limitations in terms of representation. That's why computers outperform humans on that level,
even if they can only handle zeros and ones.

A.2 Decimal representation of numbers

Humans use decimal base numbering to represent numbers. The decimal base provides an
alphabet of ten digits (0 to 9). When we write a number, the order of its digits is significant. For
example, 3498 is in not the same number as 8439, although they share the same digits. The
ordering of digits is the second characteristic of our numerical system notation: its decimal base.

A number such as 3498 can be broken down according to the position of every digit in it:

 3498 is 3000 + 400 + 90 + 8

Trailing zeroes appearing in this decomposition come from a multiplying factor positioning every
digit in the number:

 3000 is 3 x 1000
 400 is 4 x 100
 90 is 6 x 10
 8 is 8 x 1

Number 3498 may therefore be written in many forms:

 3498 = 3 x 1000 + 4 x 100 + 9 x 10 + 8 x 1

or:

 3498 = (3 x 10 x 10 x 10) + (4 x 10 x 10) + (9 x 10) + (8 x 1)

or still:

 3498 = 3 x 10 3 + 4 x 10 2 + 9 x 10 1 + 8 x 10 0

The last decomposition highlights the general method of representation in decimal base
numbering: the digits in number 3498 are positioned according to their associated power of 10,

Appendix A - Number co LARP Users Guide

158 Copyright © 2004-2008 Marco Lavoie

from right towards left, starting with power 0 (i.e. 8 is at position 0, 9 at position 1, 4 at position 2,
and so forth).

A.3 Binary representation of numbers

The technology used to store and manipulate information in a computer is rudimentary; data is
stored in binary form using packets of 0 and 1. By convention, the size of these packets is 8
binary units. A binary unit (represented by 0 or 1) is called a bit. A group of eight bits is called a
byte.

How many states can a byte have? Let’s first go back to the decimal base. How many numbers
can be represented with three digits in decimal base? In fact, three digits in base 10 allow to
represent 103 or 1000 numbers (i.e. from 0 to 999). Similarly, a byte containing 8 bits in base 2
can represent 28 = 256 numbers. A byte may therefore encode in binary form numbers 0 through
255 (or -127 through +128 if negative numbers are represented). To represent larger numbers,
multiple bytes are required: two bytes (i.e. 16 bits) can represent 216 = 65536 numbers, three
bytes can represent 224 = 16777216 numbers, and so on.

Since computers must handle various types of information, bytes are also used to encode
information other than numbers, such as text. Since there are only 26 letters in the alphabet, even
when considering uppercase and lowercase letters, accentuated letters (as in French and
Spanish), digits and punctuation marks, the complete set of characters to encode still represents
less than 256 elements. A single byte can therefore be used to represent most characters found
in English texts.

There is an international standard used to encode letters, digits and punctuation marks using
binary form: ASCII (for American Standard Encode Information for Interchange). ASCII coding
establishes a correspondence between frequently used symbols of the alphabet (as well as many
other symbols commonly used in typography) and binary numbers 0 to 255. Table 12-1 presents
ASCII codes corresponding to characters frequently used in programming.

To understand how number are represented in binary, let’s consider encoding numbers into a
byte (i.e. 8 bits). The conversion of a binary number to its corresponding decimal number (i.e
base 10) is achieved by applying the decomposition process introduced in decimal base (see the
previous section), but this time using a binary base. First we select a binary number (8 bits) at
random:

 1 0 0 1 1 1 0 1

This number may be decomposed into base 2 factors with power corresponding to the bit’s
position within the byte (from right to left):

 1 x 2 7 + 0 x 2 6 + 0 x 2 5 + 1 x 2 4 + 1 x 2 3 + 1 x 2 2 + 0 x 2 1 + 1 x 2 0 =
 1 x 128 + 1 x 16 + 1 x 8 + 1 x 4 + 1 x 1 =
 128 + 16 + 8 + 4 + 1 =
 157

LARP Users Guide Appendix A - Number co

Copyright © 2004-2008 Marco Lavoie 159

ASCII Letter ASCII Letter ASCII Letter ASCII Letter
032 Space 064 @ 096 ` 128 Ç
033 ! 065 A 097 a 129 ü
034 " 066 B 098 b 130 é
035 # 067 C 099 c 131 â
036 $ 068 D 100 d 132 ä
037 % 069 E 101 e 133 à
038 & 070 F 102 f 134 å
039 ' 071 G 103 g 135 ç
040 (072 H 104 h 136 ê
041) 073 I 105 i 137 ë
042 * 074 J 106 j 138 è
043 + 075 K 107 k 139 ï
044 , 076 L 108 l 140 î
045 - 077 M 109 m 141 ì
046 . 078 N 110 n 142 Ä
047 / 079 O 111 o 143 Å
048 0 080 P 112 p 144 É
049 1 081 Q 113 q 145 æ
050 2 082 R 114 r 146 Æ
051 3 083 S 115 s 147 ô
052 4 084 T 116 t 148 ö
053 5 085 U 117 u 149 ò
054 6 086 V 118 v 150 û
055 7 087 W 119 w 151 ù
056 8 088 X 120 x 152 ÿ
057 9 089 Y 121 y 153 Ö
058 : 090 Z 122 z 154 Ü
059 ; 091 [123 { 155 ø
060 < 092 \ 124 | 156 £
061 = 093] 125 } 157 Ø
062 > 094 ^ 126 ~ 158 ×
063 ? 095 _ 127 159 ƒ

Table 12-1: ASCII table

The binary number 10011101 therefore represents the unsigned number 157. On the other hand,
to convert a decimal number into its binary equivalent, successive powers of 2 must be found
within the binary number, starting with the largest possible power down to 0. For example, 157 is
converted using successive powers 27 downto 20:

157
29
29
29
13
5
1
1

contains 1 x 128 (27),
contains 0 x 64 (26),
contains 0 x 32 (25),
contains 1 x 16 (24),
contains 1 x 8 (23),
contains 1 x 4 (22),
contains 0 x 2 (21),
contains 1 x 1 (20),

remaining 29.
still remaining 29.
still remaining 29.
remaining 13.
remaining 5.
remaining 1.
still remaining 1.
and finally nothing remains.

By placing the corresponding power coefficients in order of resolution, we get 10011101.

Appendix A - Number co LARP Users Guide

160 Copyright © 2004-2008 Marco Lavoie

A.4 Hexadecimal representation of numbers

Since humans are generally not familiar with binary coding, it is difficult to « read » a binary
number, i.e. to mentally convert a binary number into its corresponding decimal counterpart. For
instance, converting binary 10011101 into decimal 157 requires complex computations which are
difficult to carry out mentally. To alleviate binary reading for humans, base 16 coding, commonly
called hexadecimal coding, is frequently used in computer science.

Hexadecimal coding sees a byte not as a packet of 8 bits but as two packets of 4 bits each (four
bits on left and four bits on right). Four bits allow to encode 24 = 16 different numbers. A single
hexadecimal digit may thus represent 16 different numbers (just as in base 10, one digit allows to
represent 10 numbers, from 0 to 9).

In hexadecimal coding, to the first ten digits of decimal coding (0 to 9) are added the first 6 letters
of the alphabet (A to F). By convention, A represents 10, B is 11, C is 12, D is 13, E is 14 and F is
15. Digits used to represent numbers in hexadecimal coding are therefore 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E and F.

The following table lists decimal and binary correspondences for the hexadecimal digits:

Hexadecimal Decimal Binary
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Table 12-2: Correspondences between hexadecimal, de cimal and binary coding

Since every hexadecimal digit can represent 16 numbers or 4 bits (24 = 16), two hexadecimal
digits can represent a byte. For instance, decimal number 157 is represented in binary as follows:

 1 0 0 1 1 1 0 1

This byte can be represented in hexadecimal form by dividing its bits into two packets of 4 bits
each, then converting each packet to the corresponding hexadecimal digit:

 1 0 0 1 1 1 0 1
 9 D

So binary number 10011101 is represented in hexadecimal by 9D, which is 157 in decimal.

Hexadecimal coding is commonly used to represent individual bytes since the value of a byte
may easily be read as two digits (9D) in hexadecimal form rather than eight zeros and ones
(10011101) in binary. Furthermore, when the hexadecimal to binary conversion table (Table 12-2)

LARP Users Guide Appendix A - Number co

Copyright © 2004-2008 Marco Lavoie 161

is memorized, it is easy for a programmer to mentally convert hexadecimal numbers to binary
numbers and vice versa.

LARP Users Guide Appendix B - Recursion

Copyright © 2004-2008 Marco Lavoie 163

Appendix B - Recursion
In algorithms, modules sometimes adopt a strategy often used in mathematics: recursion.
Recursive programming is presented in this appendix using the mathematical factorial as
example.

The formula for computing the factorial of an integer n, designated n!, is the following:

 n ! = 1 x 2 x 3 x ... x n

This equation can be reformulated in recursive form:

 n ! = (n-1)! x n

The latter equation is said recursive because its defines the factorial of a number as that number
multiplied by the factorial of the previous number. In other words the factorial is defined using the
factorial. Although it seems to circle to nothing, it actually makes sense because (n-1)! must first
be computed in order to get n!. Since (n-1)! = (n-2)! x (n-1), (n-2)! must be computed beforehand,
and so on. Since by definition 0! = 1, the process of computing the factorial of the previous
number stops at n = 0, which is 1 by definition.

As in most programming languages, LARP allows to write recursive modules. The following
module (Pseudo-code B-1) computes the factorial of a given parameter by recursion. The
function multiplies the given number by the factorial of the previous number. The factorial of the
previous number is in turn computed using the Factorial module. In other words, the module calls
itself a certain number of times. This is recursion .

Here is a pseudo code module using recursion to compute the factorial of its parameter n:

 \\ Factorial module
 ENTER n
 IF n = 0 THEN
 nFac = 1
 ELSE
 nFac = n * Factorial(n-1)
 ENDIF
 RETURN nFac

Pseudo code B-1: Computing the factorial (recursive module)

In this module, the line of pseudo code recursively calling back the module is preceded by a
condition ensuring that the recursive calls will eventually stop (when n reaches 0). Without such
condition, recursion would continue indefinitely. This is a basic characteristic of recursive
programming: there must be a condition which will eventually stop the recursive calls.

Recursion may sometimes be considered as an alternative to iterative structures. For instance
the Factorial module defined previously may be rewritten in iterative form, without recursion, as
shown in the next pseudo code (Pseudo-code B-2).

This is another characteristic of recursive modules: it is always possible to write an equivalent
iterative module.

Appendix B - Recursion LARP Users Guide

164 Copyright © 2004-2008 Marco Lavoie

 \\ Factorial module
 ENTER n
 nFac = 1
 WHILE n > 0 DO
 nFac = nFac * n
 n = n - 1
 ENDWHILE
 RETURN nFac

Pseudo code B-2: Computing the factorial (iterative module)

To conclude, here are three important observations on recursion:

· Recursive programming is very intuitive when solving specific problems; it often allows to
write clear and straightforward modules which would otherwise be complex if written in
iterative form.

· Recursion is very expensive in terms of computing resources. Every recursive call in a
module consumes computer memory. Every variable in the module must be temporarily
stored in memory prior to proceeding with a recursive call. As recursive calls pile up,
memory consumption follows.

· Any problem solved using recursion can always be solved in iterative form, without
recursion. In fact recursion is not essential to programming. However it often provides
elegant solutions!

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 165

Appendix C - Predefined functions

This section provides a detailed description of every predefined function in LARP.

Available predefined functions are:

ABSOLUTE EXP MAXIMUM SIZE

ARCTANGENT FLOOR MINIMUM SQUAREROOT

CEILING FORMAT PI SUBSET

COSINUS LENGTH POSITION TIME

COUNT LOG10 RANDOM TOCHARACTERS

DATE LOGE ROUND TOSTRING

ENDOFCONTENT LOWERCASE SINUS UPPERCASE

Note that:

· In the following function descriptions, brackets ([and]) are used to indicate optional
syntax elements which may be omitted when invoking the functions.

· The syntax elements presented in italics are descriptive elements not part of the
function’s syntax.

ABSOLUTE

Name: ABSOLUTE

Synonyms: ABS

Return type: Numerical

Number of arguments: 1

Description: ABSOLUTE returns the absolute value (i.e. positive) of the number
given in parameter.

Invoke format(s): ABSOLUTE(numeral)

This function returns the absolute value of the numerical value provided as argument. The type of
value returned corresponds to the argument’s type (ex: if the argument is a float, the value
returned is also a float).

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Examples

 WRITE ABSOLUTE(-3.2)
 WRITE ABS(17+4)
 WRITE ABSOLUTE("-4.1")

Pseudo code C-1: Examples invoking ABSOLUTE

Appendix C - Predefined functions LARP Users Guide

166 Copyright © 2004-2008 Marco Lavoie

Here are results displayed in the execution console when the above instructions are executed:

 3.2
 21
 4.1

Figure C-1: Results of invoking ABSOLUTE

ARCTANGENT

Name: ARCTANGENT

Synonyms: ARCTAN

Return type: Numerical (float)

Number of arguments: 1

Description: ARCTANGENT returns the trigonometric inverse function Tan-1 of
the angle given as parameter (in radians).

Invoke format(s): ARCTANGENT(numeral)

This function returns the inverse tangent (Tan-1) of the numerical value (angle in radians)
provided as parameter. The returned value is a float.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Note that various trigonometric functions can be calculated using predefined functions SINUS,
COSINUS and ARCTANGENT:

Tan(x) = SINUS(x) / COSINUS(x)

Sin-1(x) = ARCTANGENT(x / SQUAREROOT (1 - (x * x)))

Cos-1(x) = ARCTANGENT(SQUAREROOT(1 - (x * x)) / x)

Examples

 WRITE ARCTANGENT(1.2)
 WRITE ARCTAN("-1.7")

Pseudo code C-2: Examples invoking ARCTANGENT

Here are results displayed in the execution console when the above instructions are executed:

 0.876058050598193
 -1.03907225953609

Figure C-2: Results of invoking ARCTANGENT

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 167

CEILING

Name: CEILING

Synonyms: CEIL

Return type: Numerical (integer)

Number of arguments: 1

Description: CEILING returns the smallest integer value larger or equal to the
given value.

Invoke format(s): CEILING(numeral)

This function returns the smallest integer larger or equal to its parameter. If the parameter is
already integer, the parameter value is returned unchanged.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Use the predefined function FLOOR to get the largest integer smaller or equal to the given value.

Examples

 WRITE CEILING (11.32)
 WRITE CEIL ("-1.5")

Pseudo code C-3: Examples invoking CEILING

Here are results displayed in the execution console when the above instructions are executed:

 12
 -1

Figure C-3: Results of invoking CEILING

COSINUS

Name: COSINUS

Synonyms: COS

Return type: Numerical (float)

Number of arguments: 1

Description: COSINUS returns the value of trigonometric function Cos applied to
the angle given as parameter (in radians).

Invoke format(s): COSINUS(numeral)

This function returns the cosine (Cos) of the numerical value (angle in radians) provided as
parameter. The returned value is a float.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Appendix C - Predefined functions LARP Users Guide

168 Copyright © 2004-2008 Marco Lavoie

Examples

 WRITE COSINUS(1 + 0.2)
 WRITE COS("-1.7")

Pseudo code C-4: Examples invoking COSINUS

Here are results displayed in the execution console when the above instructions are executed:

 0.362357754476674
 -0.128844494295525

Figure C-4: Results of invoking COSINUS

COUNT

Name: COUNT

Synonyms: LENGTH

Return type: Numerical (integer)

Number of arguments: 1

Description: COUNT returns the number of elements defined in a container, or
the number of characters in a character string.

Invoke format(s): COUNT(container)
COUNT(character string)

If the parameter is a character string, this function counts individual characters in it.

If the parameter is a container, this function counts the number of defined elements in the
container, ignoring indeterminate elements. Counting is not applied recursively to inner
dimensions of a multidimensional container; only elements found within the first dimension of the
container are counted.

Contrary to the COUNT function, SIZE returns the number of determinate and indeterminate
elements in a container.

Examples

 WRITE COUNT([1, , 3,])
 a = [1, [2, 3], 4]
 WRITE COUNT(a)
 WRITE LENGTH("Hello world!")

Pseudo code C-5: Examples invoking COUNT

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 169

Here are results displayed in the execution console when the above instructions are executed:

 2
 3
 12

Figure C-5: Results of invoking COUNT

DATE

Name: DATE

Synonyms: None

Return type: Container

Number of arguments: 0

Description: DATE returns a container with four values: the current year, the
current month (1 to 12), the current day (1 to 31) and the day of
week (1 to 7).

Invoke format(s): DATE

This function returns the current date in a container. The four values contained in this container
are:

DATE[1] is the current year,

DATE[2] is the current month (1 = January to 12 = December),

DATE[3] is the current day, and

DATE[4] is the day of week (1 = Sunday up to 7 = Saturday).

Examples

 WRITE DATE
 WRITE "Year =", DATE[1]

Pseudo code 12-7: Example invoking DATE

Here are results displayed in the execution console when the above instructions are executed:

 [2006 3 13 2]
 2006

Figure C-6: Results of invoking DATE

Appendix C - Predefined functions LARP Users Guide

170 Copyright © 2004-2008 Marco Lavoie

ENDOFCONTENT

Name: ENDOFCONTENT

Synonyms: EOC

Return type: True or false

Number of arguments: 1

Description: ENDOFCONTENT returns true if the given input/output channel has
reached the end of the associated file or input/output buffer while
reading its contents.

Invoke format(s): ENDOFCONTENT(input/output channel)

Predefined function ENDOFCONTENT applied to an input/output channel allows to determine
within a condition whether or not the end of a document read (file or input/output buffer) has been
reached.

The function is only applicable to channels opened in READMODE. Any call to this function on an
input/output channel opened in WRITEMODE or APPENDMODE causes an interruption in the
execution of the algorithm.

ENDOFCONTENT is not applicable to the keyboard since it is not possible to associate it to an
input/output channel.

Examples

 OPEN "DATA" ON 3 IN READMODE
 REPEAT
 READ Value FROM 3
 WRITE Value
 UNTIL ENDOFCONTENT(3) OR Value < 0

 IF EOC (3) THEN
 WRITE "All data have been read"
 ENDIF

Pseudo code C-6: Examples invoking ENDOFCONTENT

EXP

Name: EXP

Synonyms: None

Return type: Numerical (float)

Number of arguments: 0

Description: EXP returns the base for natural logarithms.

Invoke format(s): EXP

This function returns e (2.71828182845905), the base for the natural logarithm (see also
predefined function LOGE).

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 171

Examples

 WRITE EXP
 WRITE LOGE(EXP)

Pseudo code C-7: Examples invoking EXP

Here are results displayed in the execution console when the above instructions are executed:

 2.71828182845905
 1

Figure C-7: Results of invoking EXP

FLOOR

Name: FLOOR

Synonyms: None

Return type: Numerical (integer)

Number of arguments: 1

Description: FLOOR returns the largest integer value smaller or equal to the
given value.

Invoke format(s): FLOOR(numeral)

This function returns the largest integer smaller or equal to its parameter. If the parameter is
already integer, the parameter value is returned unchanged.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Use the predefined function CEILING to get the smallest integer larger or equal to the given
value.

Examples

 WRITE FLOOR(11.32)
 WRITE FLOOR("-1.5")

Pseudo code C-8: Examples invoking FLOOR

Here are results displayed in the execution console when the above instructions are executed:

 11
 -2

Figure C-8: Results of invoking FLOOR

Appendix C - Predefined functions LARP Users Guide

172 Copyright © 2004-2008 Marco Lavoie

FORMAT

Name: FORMAT

Synonyms: None

Return type: Character string

Number of arguments: 1 or more

Description: FORMAT returns a character string made from a format string and
optional arguments.

Invoke format(s): FORMAT(format string, argument sequence)

This function formats a sequence of arguments according to formatting directives provided by a
format string. This function may be used to format results prior to displaying them in the execution
console. The returned value is a character string containing the formatted arguments.

Function TOSTRING can be used to convert a single argument into character string without
format specifications.

Format string

Format strings passed to FORMAT contain two types of elements: plain characters and format
specifiers. Plain characters are copied verbatim to the resulting string. Format specifiers fetch
arguments from the argument list and apply formatting to them.

Format specifiers have the following form (brackets [and] indicates optional fields and are not
part of specifier syntax):

%[-][width][.precision]type

A format specifier begins with a % character. After the % come the following, in this order:

· An optional left justification indicator, -

· An optional width specifier, width

· An optional precision specifier, .precision

· The conversion type character, type

The following table summarizes the possible values for type:

Type Designation Description

d Decimal The argument must be an integer value. The value is converted to a
string of decimal digits. If the format string contains a precision
specifier, it indicates that the resulting string must contain at least the
specified number of digits; if the value has less digits, the resulting
string is left-padded with zeros.

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 173

Type Designation Description

e Scientific The argument must be a floating-point value. The value is converted
to a string of the form "-d.ddd...E+ddd". The resulting string starts
with a minus sign if the number is negative. One digit always
precedes the decimal point. The total number of digits in the resulting
string (including the one before the decimal point) is given by the
precision specifier in the format string--a default precision of 15 is
assumed if no precision specifier is present. The "E" exponent
character in the resulting string is always followed by a plus or minus
sign and at least three digits.

f Fixed The argument must be a floating-point value. The value is converted
to a string of the form "-ddd.ddd...". The resulting string starts with a
minus sign if the number is negative. The number of digits after the
decimal point is given by the precision specifier in the format string--
a default of 2 decimal digits is assumed if no precision specifier is
present.

g General The argument must be a floating-point value. The value is converted
to the shortest possible decimal string using fixed or scientific format.
The number of significant digits in the resulting string is given by the
precision specifier in the format string--a default precision of 15 is
assumed if no precision specifier is present. Trailing zeros are
removed from the resulting string, and a decimal point appears only
if necessary. The resulting string uses fixed point format if the
number of digits to the left of the decimal point in the value is less
than or equal to the specified precision, and if the value is greater
than or equal to 0.00001. Otherwise the resulting string uses
scientific format.

n Number The argument must be a floating-point value. The value is converted
to a string of the form "-d,ddd,ddd.ddd...". The "n" format
corresponds to the "f" format, except that the resulting string contains
thousand separators.

m Money The argument must be a floating-point value. The value is converted
to a string that represents a currency amount. The conversion is
controlled by Windows® configuration and adjustable through the
Regional Settings of the Windows® Control Panel. If the format string
contains a precision specifier, it overrides the default precision of 2
digits.

s String The argument must be a character string. The string or character is
inserted in place of the format specifier. The precision specifier, if
present in the format string, specifies the maximum length of the
resulting string. If the argument is a string that is longer than this
maximum, the string is truncated.

x Hexadecimal The argument must be an integer value. The value is converted to a
string of hexadecimal digits. If the format string contains a precision
specifier, it indicates that the resulting string must contain at least the
specified number of digits; if the value has fewer digits, the resulting
string is left-padded with zeros.

Appendix C - Predefined functions LARP Users Guide

174 Copyright © 2004-2008 Marco Lavoie

Since character % the beginning of a format specifier, it cannot be used directly to insert the %
character in the resulting string. The %% specifier overcomes this difficulty. Any occurrence of
%% in the format string is therefore translated into a single % in the resulting string.

Conversion characters may be specified in uppercase as well as in lowercase; both produce the
same results. For all floating-point formats, the actual characters used as decimal and thousand
separators are obtained from Windows® (See Regional Settings in Windows® Control Panel).

Width and precision specifiers must be provided in integer form (for example, %8.3f). A width
specifier sets the minimum field width for a conversion. If the resulting string is shorter than the
minimum field width, it is padded with blanks to increase the field width. The default is to right-
justify the result by adding blanks in front of the value, but if the format specifier contains a left-
justification indicator (a "-" character preceding the width specifier), the result is left-justified by
adding blanks after the value.

Examples

Consider the following instructions which use FORMAT to convert various values into character
strings:

 \\ Examples with one argument
 WRITE '................................'
 WRITE FORMAT(' 1. ***%8d***', 999)
 WRITE FORMAT(' 2. ***%8.7d***', 999)
 WRITE FORMAT(' 3. ***%-8d***', 999)
 WRITE FORMAT(' 4. ***%e***', -999.99)
 WRITE FORMAT(' 5. ***%14.5e***', -999.99)
 WRITE FORMAT(' 6. ***%f***', -999.0)
 WRITE FORMAT(' 7. ***%f***', -999.99)
 WRITE FORMAT(' 8. ***%14.5f***', -999.99)
 WRITE FORMAT(' 9. ***%g***', -999.0)
 WRITE FORMAT('10. ***%g***', -999.99)
 WRITE FORMAT('11. ***%14.5g***', -999.99)
 WRITE FORMAT('12. ***%8n***', 99999.99)
 WRITE FORMAT('13. ***%8m***', 99999.99)
 WRITE FORMAT('14. ***%s***', "Hello")
 WRITE FORMAT('15. ***%10s***', "Hello")
 WRITE FORMAT('16. ***%-10s***', "Hello")
 WRITE FORMAT('17. ***%x***', 123)

 \\ Example with multiple arguments
 WRITE FORMAT("\n18. V=%d \n19. %s(V)=%8.4f", V, "Sin", $
 Sinus(V-4.5))

Pseudo code C-9: Examples invoking FORMAT

Here are results displayed in the execution console when the above instructions are executed:

 1. *** 999***
 2. *** 0000999***
 3. ***999 ***
 4. ***-9.999900000000000E+002***
 5. *** -9.9999E+002***
 6. ***-999***
 7. ***-999.99***
 8. *** -999.99000***

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 175

 9. ***-999***
 10. ***-999.99***
 11. *** -999.99***
 12. ***99,999.99***
 13. ***$99,999.99***
 14. ***Hello***
 15. *** Hello***
 16. ***Hello ***
 17. ***7B***

 18. V=10
 19. Sin(V)= -0.7055

Figure C-9: Results of invoking FORMAT

LOG10

Name: LOG10

Synonyms: None

Return type: Numerical (float)

Number of arguments: 1

Description: LOG10 returns base 10 logarithm of the value given in parameter.

Invoke format(s): LOG10(numeral)

This function returns base 10 logarithm (i.e. Log10) of the value given in parameter.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Examples

 WRITE LOG10(100)
 WRITE LOG10("5.5")

Pseudo code C-10: Examples invoking LOG10

Here are results displayed in the execution console when the above instructions are executed:

 2
 0.740362689494244

Figure C-10: Results of invoking LOG10

Appendix C - Predefined functions LARP Users Guide

176 Copyright © 2004-2008 Marco Lavoie

LOGE

Name: LOGE

Synonyms: None

Return type: Numerical (float)

Number of arguments: 1

Description: LOGE returns the natural logarithm of the value given in parameter.

Invoke format(s): LOGE(numeral)

This function returns the natural logarithm (i.e. base e) of the value given in parameter.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

The predefined function EXP returns the natural base constant (e) used by LOGE.

Examples

 WRITE LOGE(100)
 WRITE LOGE(EXP)

Pseudo code C-11: Examples invoking LOGE

Here are results displayed in the execution console when the above instructions are executed:

 4.60517018598809
 1

Figure C-11: Results of invoking LOGE

LOWERCASE

Name: LOWERCASE

Synonyms: None

Return type: Character string

Number of arguments: 1

Description: LOWERCASE returns the given character string with all uppercase
letters converted to lowercase letters.

Invoke format(s): LOWERCASE(character string)

This function returns the character string given in parameter with all its uppercase letters
converted into corresponding lowercase letters. Other characters in the string remain unchanged.

The predefined function UPPERCASE transforms lowercase letters into uppercase letters.

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 177

Examples

 WRITE LOWERCASE("Hello World!")
 WRITE LOWERCASE("Joe 99")

Pseudo code C-12: Examples invoking LOWERCASE

Here are results displayed in the execution console when the above instructions are executed:

 hello world!
 joe 99

Figure C-12: Results of invoking LOWERCASE

MAXIMUM

Name: MAXIMUM

Synonyms: MAX

Return type: Sequence of numerical values and/or containers

Number of arguments: 1 or more

Description: MAXIMUM returns the largest value among those provided as
parameters.

Invoke format(s): MAXIMUM(argument, argument, argument, ...)

This function accepts a variable number of parameters and returns the largest value among these
parameters. If a parameter is a container, the function walks recursively through the container to
identify the largest numerical value within.

If a parameter is a character string, an attempt is made to convert it into a numerical value.

The predefined function MINIMUM returns the smallest value among those provided as
parameters.

Examples

 WRITE MAXIMUM(10, 100, 20)
 WRITE MAX(10, [100, [20, 200], "50"], 150))

Pseudo code C-13: Examples invoking MAXIMUM

Here are results displayed in the execution console when the above instructions are executed:

 100
 200

Figure C-13: Results of invoking MAXIMUM

Appendix C - Predefined functions LARP Users Guide

178 Copyright © 2004-2008 Marco Lavoie

MINIMUM

Name: MINIMUM

Synonyms: MIN

Return type: Sequence of numerical values and/or containers

Number of arguments: 1 or more

Description: MINIMUM returns the smallest value among those provided as
parameters.

Invoke format(s): MINIMUM(argument, argument, argument, ...)

This function accepts a variable number of parameters and returns the smallest value among
these parameters. If a parameter is a container, the function walks recursively through the
container to identify the smallest numerical value within.

If a parameter is a character string, an attempt is made to convert it into a numerical value.

The predefined function MAXIMUM returns the largest value among those provided as
parameters.

Examples

 WRITE MINIMUM(10, 100, 20)
 WRITE MIN(40, [100, [20, "12"], 50], 150))

Pseudo code C-14: Examples invoking MINIMUM

Here are results displayed in the execution console when the above instructions are executed:

 10
 12

Figure C-14: Results of invoking MINIMUM

PI

Name: PI

Synonyms: None

Return type: Numerical (float)

Number of arguments: 0

Description: PI returns the value of the trigonometric constant p.

Invoke format(s): PI

This function returns the value of the trigonometric constant p, in radians (3.14159265358979).

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 179

Examples

 WRITE PI
 WRITE SINUS(PI) + COSINUS(PI)

Pseudo code C-15: Examples invoking PI

Here are results displayed in the execution console when the above instructions are executed:

 3.14159265358979
 -1

Figure C-15: Results of invoking PI

POSITION

Name: POSITION

Synonyms: POS

Return type: Numerical (integer)

Number of arguments: 2

Description: POSITION returns the position of a character string in another
character string, or the position of an element in a container.

Invoke format(s): POSITION(character string, character string)
POSITION(element, container)

This function searches for the position (i.e. the index) of an element in a character string or in a
container. The type of search depends on the second parameter:

· If the second parameter is a character string, the first parameter must also be a character
string or a single character (otherwise an attempt is made to convert the first parameter
into a character string). The function returns the position of the first occurrence of the first
string into the second. Position 0 is returned when the first string is not found within the
second. The returned positions are based on 1 as starting index (i.e. index of the first
character in a string or the first element in a container).

· If the second parameter is a container, the first parameter may be of any type. POSITION
searches for the first occurrence of the first parameter within the container. If the
specified element is not found in the container, position 0 is returned.

Note that searching a container is not recursive. Only the first dimension of a multidimensional
container is searched.

Examples

 WRITE POSITION("the", "Hello the world!")
 WRITE POSITION(3, [1, 2, [3, 4], 3, 5])
 WRITE POSITION(4, [1, 2, [3, 4], 3, 5])
 WRITE POS([3, 4], [1, 2, [3, 4], 3, 5])

Pseudo code C-16: Examples invoking POSITION

Appendix C - Predefined functions LARP Users Guide

180 Copyright © 2004-2008 Marco Lavoie

Here are results displayed in the execution console when the above instructions are executed:

 7
 4
 0
 3

Figure C-16: Results of invoking POSITION

RANDOM

Name: RANDOM

Synonyms: RAND

Return type: Numeric

Number of arguments: 0, 1 or 2

Description: RANDOM returns a float value or integer value selected randomly
(several versions of the function are available).

Invoke format(s): RANDOM
RANDOM(numeral)
RANDOM(numeral, numeral)

This function returns a numerical value selected randomly. The returned value depends on
provided parameters:

· No parameter : RANDOM returns a float value x in range 0 < x < 1.

· One parameter : RANDOM(p) returns a value x in range 0 < x < p. The type of x
corresponds to the type of p.

· Two parameters : RANDOM(p, q) returns a value x in range p < x < q. The type of x
corresponds to types of p and q (if p or q is a float, the returned value x is a float; if p and
q are integer, the returned value is integer).

If a given argument is a character string, an attempt is made to convert it into a numerical value.

Examples

 FOR i = 1 UNTIL 5 DO
 WRITE "RAND=", RANDOM
 WRITE "RAND(4)=", RANDOM(4)
 WRITE "RAND(1,5.0)=", RAND(1, 5.0)
 ENDFOR

Pseudo code C-17: Examples invoking RANDOM

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 181

Here are results displayed in the execution console when the above instructions are executed:

 RAND= 0.232930421130732
 RAND(4)= 3
 RAND(1,5.0)= 3.8551177335903
 RAND= 0.438837686553597
 RAND(4)= 3
 RAND(1,5.0)= 1.61782418005168
 RAND= 0.0393810363020748
 RAND(4)= 0
 RAND(1,5.0)= 1.03878780175
 RAND= 0.378834913019091
 RAND(4)= 1
 RAND(1,5.0)= 2.45533445477486
 RAND= 0.0822982566896826
 RAND(4)= 1
 RAND(1,5.0)= 3.0188071122393

Figure C-17: Results of invoking RANDOM

ROUND

Name: ROUND

Synonyms: RND

Return type: Numerical (integer)

Number of arguments: 1

Description: ROUND returns its parameter rounded to the nearest integer value.

Invoke format(s): ROUND(numeral)

This function returns its parameter rounded to the nearest integer value. If the given value is
already integer, it is returned as is. On the other hand if the parameter is float, its closest integer
value is returned. If the parameter is exactly midway between two integers (i.e. x + 0.5), it is
rounded up to the nearest larger integer in absolute magnitude (for example, 7.5 is rounded up to
8, while –7.5 is rounded down to –8).

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Examples

 WRITE ROUND(11.32)
 WRITE RND("-1.5")

Pseudo code C-18: Examples invoking ROUND

Appendix C - Predefined functions LARP Users Guide

182 Copyright © 2004-2008 Marco Lavoie

Here are results displayed in the execution console when the above instructions are executed:

 11
 -2

Figure C-18: Results of invoking ROUND

SINUS

Name: SINUS

Synonyms: SIN

Return type: Numeric (float)

Number of arguments: 1

Description: SINUS returns the value of trigonometric function Sin applied to the
angle given as parameter (in radians).

Invoke format(s): SINUS(numeric)

This function returns the sinus (Sin) of the numerical value (angle in radians) provided as
parameter. The returned value is a float.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Examples

 WRITE SINUS(1.2)
 WRITE SIN (1 - 2.7)

Pseudo code C-19: Examples invoking SINUS

Here are results displayed in the execution console when the above instructions are executed:

 0.932039085967226
 -0.991664810452469

Figure C-19: Results of invoking SINUS

SIZE

Name: SIZE

Synonyms: None

Return type: Numerical (integer)

Number of arguments: 1

Description: SIZE returns the number of determinate and indeterminate elements
in a container.

Invoke format(s): SIZE(container)

This function counts the total number of positions (both determinate and indeterminate elements)
in the container provided as parameter.

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 183

SIZE is not applied recursively to the inner dimensions of a multidimensional container, it only
counts elements found within the first dimension of the container.

Contrary to the SIZE function, the COUNT function only counts determinate elements in a
container.

Examples

 WRITE SIZE ([1, , 3,])
 a = [1, [2, 3], 4]
 WRITE SIZE (a)

Pseudo code C-20: Examples invoking SIZE

Here are results displayed in the execution console when the above instructions are executed:

 4
 3

Figure C-20: Results of invoking SIZE

SQUAREROOT

Name: SQUAREROOT

Synonyms: SQRT

Return type: Numerical (float)

Number of arguments: 1

Description: SQUAREROOT returns the square root of the given parameter
value.

Invoke format(s): SQUAREROOT(numeral)

This function returns the square root of the value given in parameter.

If the given argument is a character string, an attempt is made to convert it into a numerical value.

Examples

 WRITE SQUAREROOT(100)
 WRITE SQRT("5.5")

Pseudo code C-21: Examples invoking SQUAREROOT

Here are results displayed in the execution console when the above instructions are executed:

 10
 2.34520787991171

Figure C-21: Results of invoking SQUAREROOT

Appendix C - Predefined functions LARP Users Guide

184 Copyright © 2004-2008 Marco Lavoie

SUBSET

Name: SUBSET

Synonyms: None

Return type: Character string or container

Number of arguments: 3

Description: SUBSET returns a subset of the first parameter.

Invoke format(s): SUBSET(character string, start, length)
SUBSET(container, start, length)

This function returns a partial copy of the first parameter, which must be a character string or a
container. The second parameter (start) indicates the index where to begin extracting characters
or elements from the first parameter. The third parameter (length) indicates the number of
characters or elements to copy. The type of the returned value depends on the type of the first
parameter:

· If the first parameter is a character string, the function returns a character string
composed of length characters from the first parameter, starting with the character
located at start index of the given string.

· If the first parameter is a container, the function returns a container composed of length
elements from the first parameter, starting with the element located at start index of the
given container.

If the second or the third argument is a character string, an attempt is made to convert it into a
numerical value.

Examples

 WRITE SUBSET("Hello world!", 1, 5)
 WRITE SUBSET("Hello world!", 7, 5)
 WRITE SUBSET([10, 20, 30, 40, 50], 2, "3")

Pseudo code C-22: Examples invoking SUBSET

Here are results displayed in the execution console when the above instructions are executed:

 Hello
 world
 [20 30 40]

Figure C-22: Results of invoking SUBSET

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 185

TIME

Name: TIME

Synonyms: None

Return type: Container

Number of arguments: 0

Description: TIME returns a container with four values giving the current time:
hours, minutes, seconds and milliseconds.

Invoke format(s): TIME

This function returns the current time in a container. The four values returned in this container
are:

TIME[1] are hours since the start of day (0 to 23),

TIME[2] are minutes since the start of current hour (0 to 59),

TIME[3] are seconds since the start of current minute (0 to 59), et

TIME[4] are milliseconds since the start of current second (0 to 999).

Examples

 WRITE TIME
 WRITE "Hour =", TIME [1]

Pseudo code C-23: Examples invoking TIME

Here are results displayed in the execution console when the above instructions are executed:

 [15 23 54 921]
 15

Figure C-23: Results of invoking TIME

TOCHARACTERS

Name: TOCHARACTERS

Synonyms: TOCHARS

Return type: Container

Number of arguments: 1

Description: TOCHARACTERS converts the given parameter to a container with
individual characters as elements.

Invoke format(s): TOCHARACTERS (character string)
TOCHARACTERS (numeral)
TOCHARACTERS (container)

This function returns a container holding each individual character found in the given parameter.
The conversion to characters is performed according to parameter type.

Appendix C - Predefined functions LARP Users Guide

186 Copyright © 2004-2008 Marco Lavoie

· If the parameter is a character string, the elements of the returned container are
individual characters found in the given character string.

· If the parameter is a numerical value, it is first converted into a character string before
extracting the individual characters.

· If the parameter is a container, TOCHARACTERS converts every element of that
container into individual characters, regrouping all resulting characters within a single
container. If the parameter is a multidimensional container, the extraction of characters is
applied recursively.

Examples

 SEPARATOR ","
 WRITE TOCHARACTERS("Bravo!")
 WRITE TOCHARACTERS(132.4)
 WRITE TOCHARS([1, ["Bye", 3], 4])

Pseudo code C-24: Examples invoking TOCHARACTERS

Here are results displayed in the execution console when the above instructions are executed:

 [B,r,a,v,o,!]
 [1,3,2,.,4]
 [1,B,y,e,3,4]

Figure C-24: Results of invoking TOCHARACTERS

Note that every element of the resulting containers is a character. So container [1, B, y, e, 3,4]
contains elements '1' , 'B' , 'y' , 'e' , '3' and '4' .

TOSTRING

Name: TOSTRING

Synonyms: TOSTR

Return type: Character string

Number of arguments: 1

Description: TOSTRING converts the given parameter into a character string.

Invoke format(s): TOSTRING(numeral)
TOSTRING(container)

This function returns a character string containing the parameter as it appears when written to the
execution console. The parameter can be a numerical value, a container or even another
character string (in which case no conversion occurs).

The predefined function FORMAT can be used to convert one or multiple arguments according to
given format directives.

LARP Users Guide Appendix C - Predefined functions

Copyright © 2004-2008 Marco Lavoie 187

Examples

 WRITE TOSTRING("Bravo!")
 WRITE TOSTRING(132.4)
 WRITE TOSTR([1, ["Bye", 3], 4])

Pseudo code C-25: Examples invoking TOSTRING

Here are results displayed in the execution console when the above instructions are executed:

 Bravo!
 132.4
 1Bye34

Figure C-25: Results of invoking TOSTRING

In the above example instruction TOSTRING(132.4) returns the string "132.4" .

UPPERCASE

Name: UPPERCASE

Synonyms: None

Return type: Character string

Number of arguments: 1

Description: UPPERCASE returns the given character string with all lowercase
letters converted to uppercase letters.

Invoke format(s): UPPERCASE(character string)

This function returns the character string given in parameter with all its lowercase letters
converted into corresponding uppercase letters. All other characters in the string remain
unchanged.

The predefined function LOWERCASE transforms uppercase letters into lowercase letters.

Examples

 WRITE UPPERCASE("Hello world!")
 WRITE UPPERCASE("Joe 99")

Pseudo code C-26: Examples invoking UPPERCASE

Here are results displayed in the execution console when the above instructions are executed:

 HELLO WORLD!
 JOE 99

Figure C-26: Results of invoking UPPERCASE

LARP Users Guide Appendix D - LARP’s syntax

Copyright © 2004-2008 Marco Lavoie 189

Appendix D - LARP’s syntax elements
This section presents LARP’s pseudo code and flowchart syntax. In the following tables, reserved
words are presented in bold and uppercase letters (for example, START), elements to expand in
italics (for example, instructions sequence) and optional elements within brackets (for example,
[parameter lists]).

For more information on a specific syntax element, consult the corresponding section.

D.1 Modules

Main module Auxiliary module

START
 instructions sequence
END

ENTER [parameter list]
 instruction sequence
RETURN [return value]

where

· instruction sequence is a sequence of LARP instructions other than module definitions
(a module definition cannot be embedded within another module).

· parameter list , optional, consists of one or several variables separated by commas.

· return value , optional, is an expression returning an integer value, a float value, a
character string or a container.

D.2 Conditional structures

IF structure IF-ELSE structure

IF condition THEN
 instructions sequence
ENDIF

IF condition THEN
 instructions sequence #1
ELSE
 instructions sequence #2
ENDIF

Appendix D - LARP’s syntax LARP Users Guide

190 Copyright © 2004-2008 Marco Lavoie

IF structure IF-ELSE structure

where

· condition is a boolean expression made of relational operators, logical operators and/or
type validations.

· instructions sequence # are sequences of LARP instructions other than module
definitions (a module definition cannot be embedded within another module).

IF-ELSE-IF structure SELECT structure

IF condition #1 THEN
 instructions sequence #1
ELSE IF condition #2 THEN
 instructions sequence #2
ELSE IF condition #3 THEN
 instructions sequence #3

 ...

ELSE IF condition #n THEN
 instructions sequence #n
[ELSE
 instructions sequence #n+1]
ENDIF

SELECT expression
 list of constants #1 [:] instructions sequence #1
 list of constants #2 [:] instructions sequence #2
 list of constants #3 [:] instructions sequence #3

 ...

 list of constants #n [:] instructions sequence #n
 [ELSE
 instructions sequence #n+1]
ENDSELECT

IF
-E

LS
E

-I
F

 s
tr

uc
tu

re

LARP Users Guide Appendix D - LARP’s syntax

Copyright © 2004-2008 Marco Lavoie 191

S
E

LE
C

T
 s

tr
uc

tu
re

where

· condition # are boolean expressions made of relational operators, logical operators
and/or type validations.

· expression is an expression returning an integer value, a float value, a character string
or a container.

· instructions sequence # are sequences of LARP instructions other than module
definitions (a module definition cannot be embedded within another module).

· list of constants are lists of integer values, float values, character strings and/or
containers separated by commas. An optional colon (:) may be inserted between a list of
constants and its instructions sequence.

· The last ELSE section is optional and may thus be omitted when not required.

D.3 Iterative structures

WHILE structure REPEAT-UNTIL structure

WHILE condition DO
 instructions sequence
ENDWHILE

REPEAT
 instructions sequence
UNTIL condition

Appendix D - LARP’s syntax LARP Users Guide

192 Copyright © 2004-2008 Marco Lavoie

where

· condition is a boolean expression made of relational operators, logical operators and/or
type validations.

· instructions sequence is a sequence of LARP instructions other than module definitions
(a module definition cannot be embedded within another module).

FOR structure

FOR variable = initial value TO final value [STEP step value] DO
 instructions sequence
ENDFOR

where

· variable is a variable name.

· initial value , final value and step value (optional) are expressions returning an integer
value.

· instructions sequence is a sequence of LARP instructions other than module definitions
(a module definition cannot be embedded within another module).

D.4 Files and input/output buffers

OPEN input/output buffers

OPEN [BUFFER] buffer name ON channel number IN access mode

LARP Users Guide Appendix D - LARP’s syntax

Copyright © 2004-2008 Marco Lavoie 193

where

· buffer name is the name of the input/output buffer to open (the buffer must already be
created and listed in the document browser).

· channel number is an expression returning an integer value from 1 to 256.

· access mode is one of the following reserved words: READMODE, WRITEMODE or
APPENDMODE.

· Reserved word BUFFER is optional.

OPEN a file

OPEN FILE file name ON channel number IN access mode

where

· file name is the name of the file to open.

· channel number is an expression returning an integer value from 1 to 256.

· access mode is one of the following reserved words: READMODE, WRITEMODE or
APPENDMODE.

CLOSE input/output buffers

CLOSE list of channel numbers

where

· list of channel numbers is a list of one or more expressions separated with commas,
each returning an integer value from 1 to 256.

Appendix D - LARP’s syntax LARP Users Guide

194 Copyright © 2004-2008 Marco Lavoie

D.5 Inputs and outputs

Instructions for reading and writing

READ list of variables [FROM channel number]
WRITE list of expressions [IN channel number]
QUERY prompt [, list of variables]
SEPARATOR character

where

· list of variables is made of one or more variables separated by commas.

· channel number , optional, is an expression returning an integer value from 1 to 256.

· list of expressions is a list of one or more expressions, each returning an integer value,
a float value, a character string or a container.

· prompt is an expression returning a character string.

· character is an expression returning a character string containing a single character.

· if no channel number is provided, inputs and outputs are directed to the execution
console.

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 195

Appendix E - Warnings and errors
Messages displayed in LARP are classified in two categories:

1. Messages associated with the development environmen t: messages resulting from
erroneous actions or commands on behalf of users.

2. Messages associated with algorithms: messages resulting from syntax errors in
modules and/or illegal operations performed by algorithms during their execution.

E.1 Messages related to the development environment

The following messages are usually displayed in a popup window whenever LARP’s development
environment refuses operations requested by the user or whenever more information is required
to perform requested operations.

The messages are presented in alphabetical order, each with a brief description.

A backup copy of a project has been generated follo wing a crash. Do you want to reload
that project?

At regular time intervals as well as when an algorithm is executed, a backup copy of the
current project file is automatically stored in a temporary file on the computer. This backup
copy is automatically destroyed when the edited project is saved in its own file or when the
execution of the algorithm ends.

If a fatal software error occurs and causes LARP to crash, the backup copy of the edited
project is not destroyed. Upon the next startup of LARP, the backup copy will be detected
and optionally recovered. In other words if LARP crashes before you had the opportunity to
save modifications to your project, you can recover your work when LARP is restarted.

Consult the section on security backups for more information.

Warning: if you refuse to recover a backup project file upon starting up LARP, the backup
copy will be irremediably destroyed.

A document named «document name» already exists in project.

Your attempt to create a new document (module or input/output buffer) failed because the
project already has a document with the specified name. Choose a different name for the
new document.

Note that LARP may have shortened the provided document name by eliminating illegal
characters.

A project's main module cannot be deleted.

Your attempt to destroy a project’s main module failed. All LARP projects must have one and
only one main module since it is the starting point of execution of algorithms. If you want to
change the main module of a project, you must edit the contents of the existing main module.

Appendix E - Warnings and errors LARP Users Guide

196 Copyright © 2004-2008 Marco Lavoie

Basic passwords error.

The username provided to activate super user mode does not correspond to the super user
key currently connected to the computer. Make sure the super user key is properly connected
and your username corresponds to the connected key.

Close SparKey error.

An error occurred during access to the super user key currently connected to the computer.
Make sure the super user key is properly connected and the specified username corresponds
to the key.

Console must first be closed.

During the execution of an algorithm, some commands commonly available in the
development environment are temporarily deactivated until the execution ends and the
execution console is closed.

You must first close the execution console (by completing or interrupting the algorithm’s
execution) before requesting the desired operation.

Do you really want to erase all above data associat ed with the project?

As super user you may erase statistics as well as usernames attached to project files. Once
erased, this information is not recoverable.

Help files are not accessible.

It seems some files related to LARP’s online help are missing. Make sure LARP is properly
installed and help files are accessible. If it is not the case, reinstall the most recent version of
LARP. If reinstalling LARP does not resolve the situation, contact technical support.

«Identifier» is not a valid I/O buffer name.

The name you wish to give to an input/output buffer is invalid. Buffer names must be made of
letters, digits and/or the underline character (_). Furthermore the first character of buffer
names may not be a digit and spaces are not allowed within the names.

For more information, consult the section on input/output buffers.

«Identifier» is not a valid module name.

The name you wish to give to a module is invalid. Module names must be made of letters,
digits and/or the underline character (_). Furthermore the first character of module names
may not be a digit and spaces are not allowed within the names.

For more information, consult the section on modules.

Invalid dongle configuration.

The configuration of the super user key currently connected to the computer is erroneous.
Such error is usually caused by defective keys or keys not issued by LARP’s publisher.
Contact technical support to have your super user key replaced.

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 197

Invalid key format.

The username provided to activate super user mode is incompatible with the super user key
currently connected to the computer. Make sure your username corresponds to the key
connected to the computer.

Invalid username.

The username provided upon LARP’s start-up or when changing user is invalid. Read the
section on super user mode for more information.

No help is available for this type of errors.

LARP’s online help cannot provide further information on this error.

Only one file can be dragged in LARP.

LARP’s development environment accepts dropped files (i.e. by drag and drop), but only one
file at a time.

Open SparKey error.

An error occurred upon detection and/or validation of a super user key currently connected to
the computer. Make sure the super user key is properly connected, the specified username
corresponds to the key and the key is not defective. If everything seems in order, contact
technical support to have your super user key replaced.

Read data error.

An error occurred during access to the super user key currently connected to the computer.
Make sure the super user key is properly connected and the key is not defective. If everything
seems in order, contact technical support to have your super user key replaced.

Read ID error.

An error occurred upon detection and/or validation of a super user key currently connected to
the computer. Make sure the super user key is properly connected, the specified username
corresponds to the key and the key is not defective. If everything seems in order, contact
technical support to have your super user key replaced.

Read length or Start address error.

An error occurred during access to the super user key currently connected to the computer.
Make sure the super user key is properly connected, the specified username corresponds to
the key and the key is not defective. If everything seems in order, contact technical support to
have your super user key replaced.

SparKey not found.

An error occurred upon detection and/or validation of a super user key currently connected to
the computer. Make sure the super user key is properly connected, the specified username
corresponds to the key and the key is not defective. If everything seems in order, contact
technical support to have your super user key replaced.

Appendix E - Warnings and errors LARP Users Guide

198 Copyright © 2004-2008 Marco Lavoie

The project has no I/O buffer to print.

Printing modules is restricted to super user mode. However printing input/output buffers is
allowed for every user. You tried to print a project with no input/output buffer while super user
mode was deactivated.

Unknown error code.

An unknown error (not anticipated by the developers of LARP) occurred. Please contact
technical support for help.

You must close the current project prior to changin g user.

During the execution of an algorithm, some commands usually available in the development
environment are temporarily deactivated until the execution ends and the execution console
is closed.

You must first close the execution console (by completing or interrupting the execution of
algorithm) before changing the active username.

E.2 Messages related to the execution of algorithms

Messages described in this section are displayed by LARP when an error occurs during the
compilation and execution of algorithms. These messages are displayed in the message panel
and, when problem occur during the execution of an algorithm, in a popup window.

Warning messages usually indicate potential errors in an algorithm, but these errors are not fatal
and LARP is able to continue executing the algorithm.

Error messages are usually displayed:

· during the compilation of an algorithm: compilation usually continues in order to
validate the syntax of the whole algorithm, but its execution is not possible.

· during the execution of an algorithm: most errors occurring during the execution of an
algorithm are fatal and interrupt the execution.

Some messages may identify errors found in the LARP software itself. LARP's technical support
must be informed of such bugs so they may be fixed in the next version of the software.

E1001 An auxiliary module must start with ENTER com mand

You have an auxiliary module starting with an instruction other than ENTER (which may have
optional parameters).

If the module in error starts with the instruction START, remember that only the main module
may have START as first instruction.

Consult the section on modules for more information.

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 199

E1002 The main module must start with START command

The project’s main module starts with an instruction other than START.

If the module in error starts with the instruction ENTER, remember that only auxiliary
modules may start with ENTER.

Consult the section on modules for more information.

E1003 Invalid module header

The instruction starting the erroneous module does not correspond to the format imposed by
LARP.

Consult the section on modules for more information.

E1004 An auxiliary module must end with RETURN comm and

You have an auxiliary module ending with an instruction other than RETURN (with optional
return value).

If the module in error ends with an END instruction, remember that only the main module may
end with END.

Consult the section on modules for more information.

E1005 The main module must end with END command

The project’s main module ends with an instruction other than END.

If the module in error ends with the instruction RETURN (with optional return value),
remember that only auxiliary modules may end with RETURN.

Consult the section on modules for more information.

E1006 A module must end with RETURN or END

The module in error does not end with an instruction appropriate to the type of module.

Consult the section on modules for more information.

E1007 Variables must be separated by commas

Some LARP instructions require a list of variables (for example, READ, QUERY and
ENTER). When multiple variables are listed, they must be separated by commas (,) in the list.

For instance, the instruction READ A B C is invalid; it should be written READ A, B, C .

E1008 The identifier « variable name » is a module name

You try to use the name of a module as variable (for instance in an assignment). The name in
question corresponds to one of the modules defined in the project, but this module is not
invoked appropriately.

Consult the section on modules for more information.

Appendix E - Warnings and errors LARP Users Guide

200 Copyright © 2004-2008 Marco Lavoie

E1009 The keyword « reserved word » cannot be used in this context

You try to use a reserved word of LARP in a context other than those to which applies the
word in question.

The most common mistake is attempting to use a reserved word as variable name.

E1010 I do not understand this statement

You do not respect the syntax of LARP and it is not possible to provide further information on
the detected error.

See the online help corresponding to the instruction which causes the error and make sure to
use proper syntax as imposed in LARP pseudo codes and flowcharts.

E1011 Template fields must be replaced by valid pse udo code

You have dropped a template from the template panel into your pseudo code, but you forgot
to replace template fields with valid pseudo code. Template fields are identified within curly
brackets ({ and }) and must be replaced (along with their brackets) with valid pseudo code.

For example, when dropping a READ template into a pseudo code module, the line
READ {variable_list} appears. You must replace the field {variable_list} with one or more
variables.

E1012 The condition in corresponding conditional or iterative structure is invalid

There is an error in the formulation of a condition within a conditional structure or an iterative
structure.

Consult the corresponding sections for more information on formulating conditions.

E1999 Unknown error; contact technical support

An unexpected error occurred. This error was not anticipated by LARP nor its developers.

Please contact LARP’s technical support from help.

E2001 Not enough arguments provided in module call

A call to an auxiliary module does not provide enough arguments. The number of arguments
provided in a module call must correspond to the number of parameters listed in module’s
ENTER instruction.

Consult the section on auxiliary module parameters for more information.

E2002 Too many arguments provided in module call

A call to an auxiliary module provides more arguments than required. The number of
arguments provided in a module call must correspond to the number of parameters listed in
module’s ENTER instruction.

Consult the section on auxiliary module parameters for more information.

E2003 Invalid value type

A numerical value, an expression or a variable containing a numerical value of inappropriate
type is exploited in an instruction.

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 201

The most frequent reason for this error is using a variable containing a value which is
inappropriate for the LARP instruction in which it is used (for example, providing an
inappropriate value as argument to a predefined function).

E2004 Invalid index value

The index provided to reference an element of a container is invalid. Container indexes must
be integer values.

For instance, the instruction WRITE a[1.2] is erroneous since the specified index is not
integer.

For more information, consult the section describing access to container elements.

E2005 Index value out of bounds

The index provided to reference an element of a container is inferior to the allowed minimum
index value or superior to the number of elements in the container.

For more information, consult the section describing access to container elements.

E2006 The reference is not a character string

The instruction requires a character string but the provided value is of another type (for
example a number or a container).

E2007 The reference is not a container

The instruction requires a container but the provided value is of another type (for example a
number or a character string).

E2008 Unable to set container dimensions

The container cannot be dimensioned according to the instruction’s requirements. This error
is generally caused by excessive use of the computer’s memory. To overcome this problem,
use smaller containers.

For configuring the maximum size of containers in LARP algorithms, consult the section
describing configuration of the execution console.

E2009 The container is empty

The specified container contains no element.

E2010 Invalid file or I/O buffer name

The file name provided to an OPEN instruction is invalid.

When opening a file, the provided file name is invalid if it does not respect Windows ® rules
for naming files or if the file to be opened for reading does not exist.

When opening an input/output buffer, the provided buffer name is invalid if it does not
correspond to a buffer defined in the project.

Consult the section on Files and input/output buffers for more information.

Appendix E - Warnings and errors LARP Users Guide

202 Copyright © 2004-2008 Marco Lavoie

E2011 Invalid channel number

The channel number provided to an OPEN instruction is invalid. Input/output channels
available in LARP are numbered from 1 to 256.

Consult the section on Input/output channels for more information.

E2012 Channel already allocated to another file or I/O buffer

The channel number provided to an OPEN instruction is already associated with another
opened file or input/output buffer. It is not allowed to associate a single input/output channel
to multiple documents opened simultaneously.

Consult the section on Input/output channels for more information.

E2013 Attempting to access a non allocated channel

The channel number provided to the instruction is not associated with any file nor any
input/output buffer.

Before using an input/output channel for reading or writing, the channel must first be
associated with a file or an input/output buffer through the OPEN instruction.

Consult the section on Input/output channels for more information.

E2014 Invalid access to specified channel

The channel number provided to a READ or WRITE instruction does not allow the given
input/output operation.

When opening of a file or an input/output buffer using the OPEN instruction, an access mode
must be provided for accessing the document’s contents, indicating whether the document is
to be accessed for reading data from it or for writing results to it.

This error occurs when an algorithm attempts to read in from document (through its channel)
opened in write mode, or to write to a document opened in read mode.

Consult sections on Input/output channels and Opening a document for more information.

E2015 File or I/O buffer already opened on another channel

The file or input/output buffer specified in an OPEN instruction is already associated with
another input/output channel.

It is not allowed to open the same document more than once simultaneously, even on
different channels. To circumvent the error, close the channel linked to the document
involved in the error (with the CLOSE instruction) and re-open the document on another
channel.

Consult sections on Input/output channels and Opening a document for more information.

E2016 Unable to open specified file or I/O buffer

LARP is unable to open the file or the input/output buffer specified in an OPEN instruction.

If the document opened is a file, the error may be due to the impossibility of accessing the
media (hard disc, memory stick or others), a malfunction of this media or to a corrupt file.

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 203

Make sure the requested file exists and is accessible if it is to be read, or that it can be
overwritten if it already exists and must be replaced.

Errors may also be caused by difficulties in accessing the temporary files directory. This
directory is used to store files automatically created by LARP to manage input/output buffers.

For more information on temporary files and selecting an alternate directory where to store
them, consult the section on configuration of the execution console.

E2017 Unable to open a temporary file

When opening an input/output buffer, LARP creates a temporary file to handle accesses to
the buffer’s contents. This temporary file is stored in a directory provided by Windows ®. This
error means that Windows ® is unable to provide such directory to LARP.

The most probable causes of such error are the unavailability of space on the target media
(hard disc for example), the inability to write to the media or a malfunction of this media.

Errors may also be caused by difficulties in accessing the temporary files directory. This
directory is used to store files automatically created by LARP to manage input/output buffers.

For more information on temporary files and selecting an alternate directory where to store
them, consult the section on configuration of the execution console.

E2018 Unable to access specified file or I/O buffer

The specified file or input/output buffer has been opened successfully with an OPEN
instruction but an error occurred upon reading from the document or writing to the document
through the associated input/output channel.

Reasons for such errors are numerous, among which running out of space on the media
(hard disk or memory stick for example), a sudden unavailability the media (for example,
unplugging a memory stick) or a malfunction of this media.

E2019 End of file or I/O buffer reached

An attempt was made to read from a file or an input/output buffer while the end of the
document was reached (i.e. there is no more data to be read).

Use the predefined function ENDOFCONTENT to detect when the end of a document is
reached.

E2020 Invalid format string

Invalid format specifications are provided to the predefined function FORMAT.

Consult the documentation on this function to determine how to resolve the problem.

E2021 Call stack overflow (maybe due to infinite re cursion)

The algorithm caused infinite recursion during its execution. When a module calls itself or two
modules mutually call themselves, the computer’s memory will eventually run out if this
invoke process continues forever. LARP detected such situation.

Consult the section on recursion for more information.

Appendix E - Warnings and errors LARP Users Guide

204 Copyright © 2004-2008 Marco Lavoie

E2022 Variable value cannot be modified

Depending on circumstances, a variable may sometimes be locked so that its value cannot
be changed. An example of such situation is an iteration variable which cannot be changed
inside its repetitive FOR structure.

The algorithm explicitly attempted to modify the value of a locked variable.

E2023 Iteration variable « variable name » cannot be modified within the loop

An iteration variable cannot be changed by instructions inside its repetitive FOR structure.
This variable is implicitly and exclusively updated by the FOR instruction at each iteration.
The error occurred because the algorithm explicitly attempted to modify the value of an
iteration variable.

Consult the section on the FOR structure for more information.

E2024 Variable « variable name » contains an invalid file or I/O buffer name

The document name provided to an OPEN instruction through the specified variable is
invalid.

Make sure the specified variable contains the name of a file or an input/output buffer to be
opened. If what is specified in the OPEN instruction is not a variable but the name of the
document to be opened, you probably forgot to put this name within quotes for it to be
considered a character string.

When opening a file the provided file name is invalid if it does not conform to file names
allowed by Windows ®, or if the file to be opened for reading does not exist. When opening an
input/output buffer the buffer name is invalid if it does not correspond to any existing buffer in
the project.

Consult the section on Files and input/output buffers for more information.

E2025 Invalid file or I/O buffer name (did you forg et quotes?)

The name provided to an OPEN instruction is invalid. You perhaps forgot to specify this name
within quotes for it to be considered a character string.

When opening a file the provided file name is invalid if it does not conform to file names
allowed by Windows ®, or if the file to be opened for reading does not exist. When opening an
input/output buffer the buffer name is invalid if it does not correspond to any existing buffer in
the project.

Consult the section on Files and input/output buffers for more information.

E2026 Infinite loop caused by sign of step value op posite to the direction of iterations

A FOR structure forces an iteration variable to step in opposite direction of the starting and
ending values for that variable. An example of such error is an iteration variable which must
iterate through values 1 to 10 while the provided step value is negative (FOR i = 1 TO 10
STEP -1 DO).

Make sure the provided step value is signed according to the starting and ending values
imposed on the iteration variable (in the previous example, since i varies from 1 through 10,
the iteration variable must be incremented at each iteration).

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 205

Consult the section on the FOR structure for more information.

E2027 Number of arguments provided in module call d oes not correspond to number of
parameters in module header

A call to an auxiliary module defined in the project does not provide an appropriate number of
arguments. Either the call does not have enough arguments or it has too many.

For more information on restrictions imposed on arguments and module parameters, see
Auxiliary module parameters.

E2028 A module reference parameter does not have a variable as corresponding
argument in module call

A module call does not provide a variable name as argument to a corresponding module
reference parameter. When a module header includes a reference parameter, any call to this
module must provide as corresponding argument the name of a variable able to receive any
value assigned to its corresponding reference parameter by the called module.

For more information on reference parameters, see Reference parameters.

E2029 Invoking an undefined module

The algorithm calls an module not defined within the project.

Consult the section on auxiliary modules for more information.

E2101 Error #« error code » in software (address « address ») - contact technical support

This error message indicates that an unexpected error occurred during the execution of an
algorithm.

Contact LARP’s technical support and provide the information included in the error message
(the error code and address where the error occurred in LARP).

E2102 Error (« description ») in software (address « address ») - contact technical support

This error message indicates that an unexpected error occurred during the execution of an
algorithm.

Contact LARP’s technical support and provide the information included in the error message
(the description and address where the error occurred in LARP).

E2103 The processor detected an invalid arithmetic operation

An error occurred in the computer’s processor while processing arithmetic operations. This
error is probably due to a bug in LARP, such as an arithmetical operation producing a result
too large or too small to be manipulated by the computer.

This error should rarely occur in LARP. Please contact LARP’s technical support.

E2104 Floating point value exceeds processor capaci ty (overflow)

An arithmetic operation in the algorithm produced a float result too large to be manipulated by
the computer.

For more information on float value limits, consult the section on numerical values.

Appendix E - Warnings and errors LARP Users Guide

206 Copyright © 2004-2008 Marco Lavoie

E2105 Floating point value exceeds processor capaci ty (underflow)

An arithmetic operation in the algorithm produced a float result too small to be manipulated
by the computer.

For more information on float value limits, consult the section on numerical values.

E2106 Attempt to divide by zero

An arithmetic operation in the algorithm involved a division in which the denominator is 0.

E2107 Unknown mathematical error implicating a floa ting point value

An arithmetic operation involving float values failed to be evaluated during execution, even
though it is syntactically correct.

In others words, the computer’s processor was unable to compute the requested arithmetic
operation.

E2108 Unknown mathematical error implicating an int eger value

An arithmetic operation involving integer values failed to be evaluated during execution, even
though it is syntactically correct.

In others words, the computer’s processor was unable to compute the requested arithmetic
operation.

E2109 Integer value too large (overflow) or invalid index value

An arithmetic operation within an algorithm produced a result too large to be manipulated by
the computer.

For more information on integer value limits, consult the section on numerical values.

The error may also have been caused by an invalid access to a container element.

E2110 Integer value too large (overflow)

An arithmetic operation within an algorithm produced a result too large to be manipulated by
the computer.

For more information on integer value limits, consult the section on numerical values.

E2111 Out of random access memory (RAM)

There is not enough random access memory (RAM) in the computer to execute the algorithm.
Among causes for such error are oversized containers or too many applications running
simultaneously along with LARP.

To resolve the problem, close all non essential applications and, if the algorithm uses
containers, reduce their size.

E2112 File not found

The file name provided to an OPEN instruction for access in READMODE is invalid. Most
probably the file does not exist or, if it does, it is inaccessible (may be locked by another
application).

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 207

E2113 Invalid file name

A file name provided to an OPEN instruction is invalid. File names must abide by file naming
rules imposed by Windows ®.

Consult the section on files and input/output buffers for more information.

E2114 Too many files opened simultaneously

Windows ® allows a limited number of files to be opened simultaneously. An attempt to open
a file (either explicitly in an algorithm with the OPEN instruction or implicitly upon opening a
temporary file) failed because this limit was reached.

To resolve the issue, consult Windows ® documentation to determine how many files can be
opened simultaneously and change your algorithm in order not to open more files or
input/output buffers than permitted.

E2115 Access to file refused

The file name provided to an OPEN instruction corresponds to a file to which LARP cannot
have access.

Such error may be due to an attempt to open a file in WRITEMODE or APPENDMODE while
no modification is allowed to the file. It may also be possible that the targeted file is
temporarily locked by another application.

To resolve the issue, make sure the targeted file exists or is accessible according to the
desired access mode.

The error may also be caused by an invalid access to the temporary files directory. This
directory is used for storing files created by LARP to manage input/output buffers.

For more information on temporary files and their directory, consult the section on configuring
the execution console.

E2116 End of file reached

An attempt to read the content of a file failed because the end of the file was reached (there
was no more data to read).

Use the predefined function ENDOFCONTENT to detect end of file accessed in
READMODE.

E2117 Out of disk space

The space available on the data storage media (disc, diskette or others) where are stored the
files manipulated by the algorithm is exhausted. This error may also occur when input/output
buffers are manipulated since they are implicitly linked to temporary files.

To resolve the issue, free up storage space on the media or use a larger storage media.

E2118 Invalid data read

A READ instruction involving an input/output channel associated to a file opened in
READMODE failed. The most probable cause of such failure is an attempt to read data with
invalid format. It might also be that the file or its content is corrupted.

Appendix E - Warnings and errors LARP Users Guide

208 Copyright © 2004-2008 Marco Lavoie

For more information, consult sections on files and input/output buffers and reading through
an input/output channel.

E2119 Unknown file error

An unexpected error occurred while executing a file operation (either opening the file, reading
from it, writing to it or closing the file). The error may be also be caused by corrupted file
contents.

Consult the section on files and input/output buffers for more information.

E2120 Out of stack space (may be due to infinite re cursion)

The algorithm caused infinite recursion during its execution. When a module calls itself or two
modules mutually call themselves, the computer’s memory will eventually run out if this
calling process continues forever. LARP detected such situation.

Consult the section on recursion for more information. The call stack size may also be
increased (see configuring the execution console). If the error is not caused by infinite
recursion, contact technical support to inform them of the problem.

E2121 Operation involving incompatible data types

Some types of variables and numerical values cannot be combined in arithmetic expressions.
One such example is to divide a number by a character string (for example, 10/'Hello').

LARP interrupts the execution of the algorithm and displays this error message when it
encounters such flawed expressions.

E2122 Access error to a file (« description »)

This message indicates an error which occurred during an access to a file or an input/output
buffer. An additional error description provided by Windows ® accompanies the displayed
message.

The most probable cause for this error is a failure to access a file which suddenly became
unavailable. Make sure the storage media (disc, diskette, etc) containing the file is accessible
and operational.

The error may also occur during access to the temporary files directory. This directory is used
to store files transparently created by LARP when handling input/output buffers during
algorithm execution. For more information on the temporary files and their directory, consult
the section on Configuration of the execution console.

E2999 Unknown error; contact technical support

An unexpected error (not anticipated by the developers of LARP) occurred. Please contact
LARP’s technical support for help.

E3001 Opened I/O buffers or files have not been clo sed

The algorithm in execution opened files or input/output buffers (with OPEN instructions) but
did not close them upon termination.

Consult online help on the CLOSE instruction for more information.

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 209

E3002 Variable « variable name » without a value

The algorithm refers to the value of a variable while no value has previously been assigned to
this variable.

Make sure to assign a value to the variable before using it in expressions and LARP
instructions. You may also have misspelled the name of a variable, making it distinct from
another variable to which a value has been assigned.

When an algorithm refers to a variable with no assigned value, the variable is said to be
indeterminate. Indeterminate variables often cause fatal errors during the execution of
algorithms.

For more information, consult the section on assignment.

E3003 Variable « variable name» without a value (maybe confusing with variable
«variable name »?)

The algorithm refers to the value of a variable while no value has previously been assigned to
this variable.

Make sure to assign a value to the variable before using it in expressions and LARP
instructions. You may also have misspelled the name of a variable, making it distinct from
another variable to which a value has been assigned.

When an algorithm refers to a variable with no assigned value, the variable is said to be
indeterminate. Indeterminate variables often cause fatal errors during the execution of
algorithms.

For more information, consult the section on assignment.

E3004 Container element « container name » without a value

The algorithm refers to the value of a nonexistent container element.

Make sure to assign a value to the container position before using the element in expressions
and LARP instructions. You may also have misspelled the name of a container, making it
distinct from another one to which values have properly been assigned. Finally, make sure of
the index of the referred element is valid.

When an algorithm refers to a container element with no assigned value, the element is said
to be indeterminate. Indeterminate container elements and variables often cause fatal errors
during the execution of algorithms.

For more information, consult the section on assignment.

E3005 Container element « container name » without a value (maybe confusing with
variable « variable name »?)

The algorithm refers to the value of a nonexistent container element.

Make sure to assign a value to the container position before using the element in expressions
and LARP instructions. You may also have misspelled the name of a container, making it
distinct from another one to which values have properly been assigned; LARP identified
another container or variable having an assigned value and a name closely resembling the
erroneous container. Finally, make sure of the index of the referred element is valid.

Appendix E - Warnings and errors LARP Users Guide

210 Copyright © 2004-2008 Marco Lavoie

When an algorithm refers to a container element with no assigned value, the element is said
to be indeterminate. Indeterminate container elements and variables often cause fatal errors
during the execution of algorithms.

For more information, consult the section on assignment.

E3006 Calling a module which do not return a value

A module which does not return a value is invoked as though it does return a value.

For more information, consult the section on modules with a return value.

E3007 Access to indeterminate container element

The algorithm refers to the value of a nonexistent container element.

Make sure to assign a value to the container position before using the element in expressions
and LARP instructions. You may also have misspelled the name of a container, making it
distinct from another one to which values have properly been assigned. Finally, make sure of
the index of the referred element is valid.

When an algorithm refers to a container element with no assigned value, the element is said
to be indeterminate. Indeterminate container elements and variables often cause fatal errors
during the execution of algorithms.

For more information, consult the section on assignment.

E3008 The FOR loops in this project's flowcharts mu st be validated since they may not
respect the new format of unconditional iterative s tructures

The format of a flowchart FOR structure had to be modified in order to make its syntax match
its pseudo code counterpart.

You opened a project file which was created with an earlier version of LARP, and your
current version of LARP had to convert flowchart FOR structures within the project’s
algorithms to the new version of the iterative structure. Since such conversions are not
infallible, you should verify all flowchart FOR structures within the project to validate their
components (the iteration variable, start and end values, and the step value).

For more information on FOR loops and their syntax, see the section on FOR structures.

E9999 Unknown error; contact technical support

An unexpected error (not anticipated by the developers of LARP) occurred. Please contact
LARP’s technical support for help.

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 211

Index

-
Arithmetic operators .. 105
Container operators ... 107
Priority of operators ... 118

' (character string) See Single quote
!

Logical operators ... 117
Priority of operators ... 118

!=
Priority of operators ... 118
Relational operators .. 115

" (character string)See Double quote
#IND ... See Indeterminate
$ (extending an instruction) .. 81

IF-ELSE-IF structure.. 126
%

Arithmetic operators .. 105
Priority of operators ... 118

()
Arithmetic operators .. 105
Parameter declarations in module header 145
Priority of operators ... 118

*
Arithmetic operators .. 105
Priority of operators ... 118

, (comma)
Grouping values together 93
Parameter declarations in module header 144
Query instruction ... 101
Read instruction .. 98
Write instruction... 99

/
Arithmetic operators .. 105
Priority of operators ... 118

//
Arithmetic operators .. 105
Priority of operators ... 118

: (colon) ... 128
[] (container) See Container element
\ (escape sequence)See Escape sequence
\\

Comments ... 79
Escape sequences .. 90
Opening a file .. 156

^
Arithmetic operators .. 105
Priority of operators ... 118

+
Arithmetic operators .. 105
Container operators ... 107
Priority of operators ... 118
String operators ... 106

<
Priority of operators ... 118
Relational operators .. 114

<=
Priority of operators ... 118
Relational operators .. 114

<> (not equal) ... See !=
=

Assignment ... 88
Priority of operators ... 118
Relational operators .. 115

= (assignment) See Assignment
>

Priority of operators .. 118
Relational operators .. 114

>=
Priority of operators .. 118
Relational operators .. 114

A

ABS .. See ABSOLUTE
ABSOLUTE .. 108, 171
Accelerator keys

Graphical editor commands accessible through the
keyboard .. 57

Textual editor commands accessible through the
keyboard .. 48

Top menu ... 35
Access mode

Detecting end of content through input/output
channels ... 161

ENDOFCONTENT .. 176
Opening a document .. 155

Access modes ... 157
Active username ... 71
Addition .. See +
Algorithm

Introduction ... 17
AND

Logical operators .. 117
Priority of operators .. 118

Animation .. 62
Step execution interface 60
Step execution modes .. 61

APPENDMODE .. 157
Outputs through input/output channels 160
Syntax (files) ... 199
Syntax (input/output buffers) 199

ARCTAN .. See ARCTANGENT
ARCTANGENT .. 108, 172
Argument

Parameter declarations in module header 145
Reference parameters .. 148
Syntax of instructions .. 80
Value parameters ... 146

Arithmetic operator .. 105
Priority of operators .. 117

Array ... See Container
ASCII

Relational operators .. 115
Table ASCII .. 164

Assignment ... 90
Access to container elements 94
Modules with a return value 151
Operations .. 88
Read instruction .. 98
Variable names ... 88

Auxiliary module .. 141
Alternate call syntax .. 151
Modules with a return value 149
Parameter declarations in module header 144

B

Base 10... See Binary coding
LOG10 .. 181

Index LARP Users Guide

212 Copyright © 2004-2008 Marco Lavoie

Base 16 See Hexadecimal coding
Base 2 .. See Binary coding
BEGIN

Begin point and end point of an algorithm 80
Binary ... See Binary coding
Binary coding ... 163
Blowfish ... See Encryption
Bookmark .. 45

Textual editor commands accessible through the
keyboard ... 48

Break point
Step execution interface .. 61
Step execution modes ... 61

Breakpoint ... 62
BUFFER .. 198
Bug

Bug reports.. 28
Bugs

LARP updates ... 26
Technical support .. 28

Buy
Ordering super user keys 26
Registration procedure .. 24

Byte
Hexadecimal representation of numbers 166

C

C++
Assignment ... 90
Constants and variables .. 87
Containers ... 93
FOR structure .. 138
Introduction ... 17
Operators and predefined functions 105

CALL
Alternate call syntax .. 151
Auxiliary module parameters 143
Auxiliary modules .. 141
Parameter declarations in module header 145

Call (module)
Configuration of the execution console 66

Call by reference..................................... See Argument
Call by value ... See Argument
Call stack

Call stack inspection .. 62
Configuration of the execution console 66
Step execution interface .. 60

Caret
Mouse control in the textual editor 49
Textual editor commands accessible through the

keyboard ... 48
Carriage return

Escape sequences .. 90
IF and IF-ELSE structures 120
Query instruction ... 100
Read instruction .. 98
Separator .. 102
Write instruction... 99

CD
Installation from a CD .. 22
Minimal requirements in hardware and software 21

CEIL .. See CEILING
CEILING .. 109, 173
Channel functions

ENDOFCONTENT .. 176
Channel number

Files and input/output buffers 153
Input/output channels .. 155

Character string .. 89
Colors in the editors .. 70
Colors in the execution console 69
COUNT ... 174
Escape sequences ... 90
FORMAT .. 178
LOWERCASE ... 182
POSITION .. 185
Predefined string functions.................................. 109
Read instruction .. 98
Relational operators .. 115
String operators .. 106
SUBSET ... 190
TOCHARACTERS .. 192
TOSTRING ... 193
UPPERCASE ... 194

Character string functions
COUNT ... 174
FORMAT .. 178
LOWERCASE ... 182
POSITION .. 185
SUBSET ... 190
TOCHARACTERS .. 192
UPPERCASE ... 194

Checking integrity.. 73
Clipboard

Converting flowcharts to pseudo code 77
Cut and paste restrictions 73
Editing a textual document 46

CLOSE... 158, 199
Color selection

Editing a textual document 45
Execution console ... 44
Syntax highlight .. 47

Colors
Color selection .. 68
Colors in the editors .. 69
Colors in the execution console 69
Graphical editor configuration 55

Comma
Closing an input/output channel 158

Commands
Graphical editor commands accessible through the

keyboard .. 56
Graphical editor’s edit commands 55
Textual editor commands accessible through the

keyboard .. 48
Textual editor's edit commands 47

Comment
Colors in the editors .. 70

Comments .. 79
Comparison... See Condition
Compilation ... 58

Message panel ... 41
Warnings and errors ... 63

Compound condition
Conditions .. 114
Logical operators .. 117

Computer
Minimal requirements in hardware and software ... 21
Why are computers binary? 163

Concatenation
Container operators .. 107
String operators .. 106

Condition ... 114
Conditional structures ... 113
Iterative structures .. 131
Logical operators .. 117
Priority of operators .. 117
Relational operators .. 114

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 213

REPEAT-UNTIL structure 133
Type validation .. 116
WHILE structure .. 131

Conditional instruction
Conditional structures .. 113

Conditional loop
FOR structure .. 138

Conditional structure .. 113
Detecting end of content through input/output

channels ... 161
Embedded IF-ELSE structures 121
IF-ELSE-IF structure.. 123

Conditional structures
IF and IF-ELSE structures 119
SELECT structure ... 127

Configuration ... 64
Color selection .. 68
Colors in the editors .. 69
Colors in the execution console 69
Configuration of editors ... 65
Configuration of the execution console 65
Configuration of the super user mode and the

updating system .. 67
Graphical editor configuration 55

Constant .. 87
Arithmetic operators .. 105
EXP (e) ... 177
Numeric ... 89
PI (p) ... 184
SELECT structure ... 127

Container ... 93
Access to container elements 93
Configuration of the execution console 66
Container operators ... 107
COUNT ... 174
Grouping values together 93
MAXIMUM ... 183
MINIMUM .. 184
POSITION ... 185
Predefined container functions 110
Relational operators .. 115
Retrieving container elements 94
SIZE .. 188
SUBSET .. 190
TOCHARACTERS ... 192
TOSTRING .. 193

CONTAINER
Type validation .. 116

Container element ... 93
Access to container elements 93

Container functions
COUNT ... 174
DATE .. 175
MAXIMUM ... 183
MINIMUM .. 184
POSITION ... 185
SIZE .. 188
SUBSET .. 190
TIME ... 191
TOCHARACTERS ... 192
TOSTRING .. 193

Contextual menu
Document browser .. 39
Graphical editor commands accessible through

menus ... 56
Graphical editor’s edit commands 55
Inserting, moving and deleting flowchart instructions

 ... 53
Mouse control in the textual editor 49, 57

Textual editor commands accessible through menus
 ... 47

Textual editor's edit commands 47
Warnings and errors ... 63

Contextual Menu
Editing a textual document 45

Control panel... 37
Editing a flowchart .. 51
Editing a textual document 45
Graphical editor commands accessible through

menus .. 56
Graphical editor functionalities 49
Graphical editor’s edit commands 56
Interface elements .. 34
Step execution interface 59
Textual editor commands accessible through menus

 ... 48
Textual editor's edit commands 47

Conversion
Converting flowcharts to pseudo code 76

Conversion of type
Arithmetic operators .. 106
String operators .. 106

Copyright .. 20
COS ... See COSINUS
COSINUS ... 109

ARCTANGENT ... 172
COUNT .. 109, 110, 174

Retrieving container elements 95
SIZE ... 189

Crash of LARP
Bug reports ... 28
Security backups .. 63

Cut
Inserting, moving and deleting flowchart instructions

 ... 54
Cut and paste

Converting flowcharts to pseudo code 77
Cut and paste restrictions 73

D

DATE .. 175
Decimal .. See Decimal coding
Decimal coding ... 163
DEFINED

Type validation ... 117
Delete instructions

Inserting, moving and deleting flowchart instructions
 ... 54

DESTROY .. 94
DETERMINATE

Type validation ... 116
Development environment .. 33

General configuration.. 64
Input/output buffers ... 153
Interface elements .. 33
Introduction ... 17
Messages related to the development environment

 ... 201
Online help ... 28

Difference
Container operators .. 107

Directory
Opening a file ... 156

Distribution .. 20
Division .. See /
DO

FOR structure ... 135
Syntax (FOR structure) 198

Index LARP Users Guide

214 Copyright © 2004-2008 Marco Lavoie

Syntax (WHILE structure) 197
WHILE structure .. 131

Document
Document browser .. 39
Editors ... 40
Opening a document ... 155

Document browser ... 39
Editing a flowchart ... 51
Editing a textual document 45
Editors ... 40
Files .. 154
Graphical editor functionalities 49
Input/output buffers ... 153
Interface elements ... 34

Documentation .. 17
Double quote ... 89
Downloading .. 22

LARP updates ... 26
Drag and drop

Editing a flowchart ... 52
Graphical editor functionalities 50
Graphical editor’s edit commands 56
Inserting, moving and deleting flowchart instructions

 ... 53
Mouse control in the textual editor 49, 57
Template panel ... 40

E

E (scientific notation) ... 89
Editor

Document browser .. 39
Editing a flowchart ... 51
Editing a textual document 45
Graphical editor functionalities 49
Textual editor functionalities 45

Editors ... 40
Color selection .. 68
Colors in the editors .. 69
Configuration of editors ... 65
Interface elements ... 34
Message panel .. 42

Electronic mail
LARP... 31
LARP's author ... 21

Element position (in a container) 93
ELSE

IF and IF-ELSE structures 119
IF-ELSE-IF structure.. 123
SELECT structure ... 127
Syntax (IF-ELSE structure) 195
Syntax (IF-ELSE-IF structure) 196
Syntax (SELECT structure) 196

ELSE IF ... 196
Email

Bug reports.. 30
Embedded structures

Embedded IF-ELSE structures 121
IF-ELSE-IF structure.. 123

Encryption
Document encryption... 73

END ... 195
Begin point and end point of an algorithm 80
Editing a flowchart ... 51
Main module .. 140

ENDFOR ... 198
FOR structure .. 135

ENDIF
Conditional structures .. 113
IF and IF-ELSE structures 119

IF-ELSE-IF structure ... 123
Syntax (IF structure) ... 195
Syntax (IF-ELSE structure) 195
Syntax (IF-ELSE-IF structure) 196

ENDOFCONTENT ... 160, 176
ENDSELECT .. 196

SELECT structure ... 127
ENDWHILE ... 197

WHILE structure ... 131
ENTER.. 195

Auxiliary modules .. 141
Editing a flowchart .. 52
Parameter declarations in module header 144

EOC .. See ENDOFCONTENT
Errors

Application error.. 29
Bug reports ... 28
Compilation and execution 58
Help available in LARP ... 33
Message panel ... 42
Online help ... 28
Warnings and errors 63, 201

Escape sequence.. 90
Opening a file ... 156

Evaluation period
License agreement ... 19
Registration .. 23

Execution .. 58
Configuration of the execution console 65
Flowchart instructions ... 51
Message panel ... 41
Messages related to the execution of algorithms. 204
Numeric .. 89
Running a project.. 58
Security backups .. 63
Warnings and errors ... 63

Execution console ... 43
Color selection .. 68
Colors in the execution console 69
Compilation and execution 58
Configuration of the execution console 65
Files and input/output buffers 153
Inputs and outputs .. 97
Running a project.. 58
Separator .. 101
Step execution window ... 44

Execution mode
Step execution modes .. 61

EXP ... 109, 177
LOGE ... 182

F

F1 (help) ... 33
Factorial (recursion) .. 169
File .. 154

Access modes .. 157
Closing an input/output channel 158
Detecting end of content through input/output

channels ... 160
ENDOFCONTENT .. 176
Files and input/output buffers 153
Input/output channels ... 155
Inputs and outputs .. 97
Inputs through input/output channels 158
Opening a file ... 156
Outputs through input/output channels 159

FILE .. 199
Opening a file ... 156

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 215

Flip
Editing flowchart instructions 55

Float
Colors in the execution console 69
Numeric ... 89
Read instruction .. 98

FLOAT
Type validation .. 116

FLOOR .. 109, 177
Flowchart ... 79

Colors in the editors .. 70
Comments ... 80
Conditional structures .. 113
Converting flowcharts to pseudo code 76
Document browser .. 39
Editing a flowchart ... 51
Embedded IF-ELSE structures 122
Graphical editor functionalities 49
IF and IF-ELSE structures 120
IF-ELSE-IF structure.. 126
IF-ELSE-IF structure.................................... 123, 129
Input/output instruction for flowcharts 97
Module names ... 140
My first algorithm ... 79
Query instruction ... 101
Read instruction .. 99
REPEAT-UNTIL structure 134
SELECT structure ... 128
Separator .. 102
Template panel ... 39
WHILE structure .. 131
Write instruction... 100

Flowchart instruction .. 50
Manipulating flowchart instructions 52

Font
Configuration of editors ... 65
Graphical editor configuration 55

FOR ... 198
FOR structure .. 135

FOR structure See FOR structure
FORMAT ... 110, 178

TOSTRING .. 193
Format specifier

FORMAT ... 178
Format string

FORMAT ... 178
Freeware

License agreement .. 18
Freeware version ... 18
FROM .. 200

Inputs through input/output channels 159

G

Graphical editor ... 49
Editing flowchart instructions 54
Editors ... 41
Graphical editor configuration 55
IF-ELSE-IF structure.. 123
Input/output instruction for flowcharts 97
Interface elements ... 34
Message panel .. 42
Step execution modes ... 61

Gutter
Configuration of editors ... 65

H

Hardware requirements ... 21
Hexadecimal coding .. 166

Hint help
Interface elements .. 35
Status panel.. 42
Technical support ... 27

Hints
Help available in LARP ... 33

I

IF
Conditional structures ... 113
IF and IF-ELSE structures 119
IF-ELSE-IF structure ... 123
Syntax (IF structure) ... 195
Syntax (IF-ELSE structure) 195
Syntax (IF-ELSE-IF structure) 196

IF structure See Conditional structures
IF-ELSE structure................. See Conditional structures
IF-ELSE-IF structure See Conditional structures
IN 200

Outputs through input/output channels 160
Syntax (files) ... 199
Syntax (input/output buffers) 198

Indentation ... See Tabulation
Indeterminate

Arithmetic operators .. 106
Assignment ... 91
Container operators .. 107
Retrieving container elements 94

INDETERMINATE
Type validation ... 116

Input/output ... 97
Input/output buffer ... 153

Access modes .. 157
Closing an input/output channel 158
Colors in the editors .. 70
Configuration of the execution console 66
Detecting end of content through input/output

channels ... 160
Document browser .. 39
ENDOFCONTENT .. 176
Files .. 154
Files and input/output buffers 153
Input/output channels ... 155
Inputs and outputs .. 97
Inputs through input/output channels 158
Opening and input/output buffer 155
Outputs through input/output channels 159
Textual editor commands accessible through menus

 ... 47
Input/Output buffer

Cut and paste restrictions 74
Printing restrictions ... 74

Input/output channel .. 155
Access modes .. 158
Closing an input/output channel 158
Detecting end of content through input/output

channels ... 161
ENDOFCONTENT .. 176
Files and input/output buffers 153
Input/output instruction for flowcharts 98
Inputs through input/output channels 159
Opening a document .. 155
Opening and input/output buffer 155
Outputs through input/output channels 159

Inputs/outputs
Input/output instruction for flowcharts 97

Insert
Inserting, moving and deleting flowchart instructions

 ... 53

Index LARP Users Guide

216 Copyright © 2004-2008 Marco Lavoie

Insertion mode ... 42
Insertion node

Editing a flowchart ... 52
Inserting, moving and deleting flowchart instructions

 ... 53
Manipulating flowchart instructions 52
Mouse control in the textual editor 57

Inspection
Call stack inspection .. 62
Step execution interface .. 60

Installation ... 21
LARP updates ... 26
License agreement .. 18
Minimal requirements in hardware and software 21

Instruction
Separation of instructions 81
Syntax of instructions .. 80

Integer
Colors in the execution console 69
Numeric ... 89
Read instruction .. 98

INTEGER
Type validation .. 116

Integer division ... 105 See //
Interface

Files and input/output buffers 153
Interface element ... 33
Internet

LARP updates ... 27
LARP's author ... 21
Ordering super user keys 26
Registration procedure .. 24

Interrupting execution
Execution console ... 43
Running a project .. 58

Introduction .. 17
IS 116
Iteration ... 132

REPEAT-UNTIL structure 133
Iteration variable (FOR structure) 135
Iterative structure ... 131

Detecting end of content through input/output
channels ... 161

FOR structure .. 135
Recursion .. 169
REPEAT-UNTIL structure 133
WHILE structure .. 131

J

Java
Assignment ... 90
Constants and variables .. 87
Containers ... 93
FOR structure .. 138
Introduction ... 17
Operators and predefined functions 105

K

Keyboard
Detecting end of content through input/output

channels ... 161
Files and input/output buffers 153
Graphical editor’s edit commands 56
Read instruction .. 98
Textual editor commands accessible through the

keyboard ... 48
Textual editor's edit commands 47

L

LARP
Introduction ... 17

LARP release
License agreement ... 19

LARP’s splash window also indicates which version is
currently running. License 19

LARP's author ... 21
LENGTH ... 110 See COUNT
License agreement .. 18

Registration .. 23
License number

Ordering super user keys 25
Lisp

Constants and variables 87
Local variables .. 143
LOG10 ... 109, 181
LOGE ... 109, 182

EXP .. 177
Logging ... 29
Logical operator .. 117

Conditions .. 114
Priority of operators .. 117
Relational operators .. 116

Loop .. See Iterative structure
Lowercase

Variable names ... 87
LOWERCASE .. 110, 182

M

Main module ... 140
Parameter declarations in module header 146

Mathematical functions....... See Trigonometric functions
ABSOLUTE .. 171
CEILING ... 173
EXP .. 177
FLOOR ... 177
LOG10 .. 181
LOGE ... 182
MAXIMUM .. 183
MINIMUM ... 184
RANDOM ... 186
ROUND .. 187
SQUAREROOT .. 189

MAX .. See MAXIMUM
MAXIMUM ... 109, 110, 183
Menu bar

Help available in LARP ... 33
Message panel .. 41

Compilation and execution 58
Help available in LARP ... 33
Interface elements .. 34
Messages related to the execution of algorithms. 204
Running a project.. 58
Warnings and errors ... 63

Messages
Warnings and errors ... 63

Messages related to the execution of algorithms
E1001 ... 204
E1002 ... 205
E1003 ... 205
E1004 ... 205
E1005 ... 205
E1006 ... 205
E1007 ... 205
E1008 ... 205
E1009 ... 206
E1010 ... 206

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 217

E1011.. 206
E1012.. 206
E1999.. 206
E2001.. 206
E2002.. 206
E2003.. 207
E2004.. 207
E2005.. 207
E2006.. 207
E2007.. 207
E2008.. 207
E2009.. 207
E2010.. 208
E2011.. 208
E2012.. 208
E2013.. 208
E2014.. 208
E2015.. 209
E2016.. 209
E2017.. 209
E2018.. 209
E2019.. 210
E2020.. 210
E2021.. 210
E2022.. 210
E2023.. 210
E2024.. 210
E2025.. 211
E2026.. 211
E2027.. 211
E2028.. 211
E2029.. 211
E2101.. 211
E2102.. 212
E2103.. 212
E2104.. 212
E2105.. 212
E2106.. 212
E2107.. 212
E2108.. 212
E2109.. 213
E2110.. 213
E2111.. 213
E2112.. 213
E2113.. 213
E2114.. 213
E2115.. 213
E2116.. 214
E2117.. 214
E2118.. 214
E2119.. 214
E2120.. 214
E2121.. 215
E2122.. 215
E2999.. 215
E3001.. 215
E3002.. 215
E3003.. 216
E3004.. 216
E3005.. 216
E3006.. 217
E3007.. 217
E3008.. 217
E9999.. 217

MIN ... See MINIMUM
MINIMUM .. 109, 110, 184
Module... 139

Begin point and end point of an algorithm 80
Colors in the editors .. 70
Cut and paste restrictions 74

Document browser .. 39
Module names .. 139
Printing restrictions ... 74
Textual editor commands accessible through menus

 ... 47
Module name .. 139
Module with return value ... 139
Modulo .. 105 See %
Mouse

Graphical editor’s edit commands 56
Mouse control in the textual editor 49
Textual editor's edit commands 47

Move
Inserting, moving and deleting flowchart instructions

 ... 54
Multiplication .. See *

N

Name of variable
Assignment ... 90

Negation ... 105
NOT .. See !

Priority of operators .. 118

O

ON
Syntax (files) ... 199
Syntax (input/output buffers) 198

Online help .. 28
Introduction ... 17
Separation of instructions 81
Technical support ... 27
Warnings and errors ... 63

OPEN ... 155
Files .. 155
Opening a file ... 156
Opening and input/output buffer 155
Syntax (files) ... 199
Syntax (input/output buffers) 198

Operating system .. 21
Operator .. 105

Arithmetic operators .. 105
Container operators .. 107
Priority of operators .. 117
String operators .. 106

OR
Logical operators .. 117
Priority of operators .. 118

Orientation
Editing flowchart instructions 55
Flowchart instructions ... 51

P

Parameter ... 143
Parameter declarations in module header 144
Reference parameters .. 148
Value parameters ... 146

Parametrized module
Modules .. 139

Parentheses .. See ()
Pascal

Introduction ... 17
Paste

Inserting, moving and deleting flowchart instructions
 ... 54

Index LARP Users Guide

218 Copyright © 2004-2008 Marco Lavoie

Pedagogy
Introduction ... 18

Perl
Constants and variables .. 87

PI (p) ... 109, 184
Plagiarism prevention .. 71

Configuration of the super user mode and the
updating system .. 67

License agreement .. 18
Project statistics .. 76
Public project files ... 77
Super user mode ... 71
Unlocking the development environment 74

Polymorphic contextual
Assignment ... 90
Constants and variables .. 87
Operations... 88

POS ... See POSITION
POSITION ... 110, 111, 185
Power ... 105 See ^
Ppriority of operators ... 117
Predefined function .. 108

Predefined mathematical functions 108
Predefined string functions 109
Trigonometric functions See Predefined

mathematical functions
Predefined functions .. 171

ABSOLUTE ... 171
Alternate call syntax .. 152
ARCTANGENT.. 172
CEILING .. 173
Colors in the editors .. 70
COSINUS .. 174
COUNT ... 174
DATE .. 175
ENDOFCONTENT .. 176
EXP ... 177
FLOOR .. 177
FORMAT ... 178
LOG10 .. 181
LOGE .. 182
LOWERCASE ... 182
MAXIMUM ... 183
MINIMUM .. 184
PI (p) ... 184
POSITION ... 185
Predefined container functions 110
RANDOM .. 186
Retrieving container elements 95
ROUND ... 187
SINUS ... 188
SIZE .. 188
SQUAREROOT ... 189
SUBSET .. 190
TIME ... 191
TOCHARACTERS ... 192
TOSTRING .. 193
UPPERCASE .. 194

Printing
Editing a textual document 46
Printing restrictions .. 74

Priority of operators
Arithmetic operators .. 105

Programming language
Introduction ... 17

Project file
Bug reports.. 29
Document encryption... 73

Project statistics ... 75

Pseudo code ... 79
Colors in the editors .. 69
Converting flowcharts to pseudo code 76
Document browser .. 39
Module names .. 140
My first algorithm .. 79
Template panel ... 39

Pseudonyme
Selection ... 72

Public project .. 77

Q

QUERY .. 100, 200
Colors in the execution console 69
Separator .. 101

R

RAND .. See RANDOM
RANDOM ... 108, 186
READ ... 98, 200

Access modes .. 157
Execution console ... 43
Inputs through input/output channels 159
Separator .. 101

Reading .. 98
ENDOFCONTENT .. 176
Query instruction... 100
Separator .. 101
String containing spaces 102

READMODE ... 157
Inputs through input/output channels 159
Syntax (files) ... 199
Syntax (input/output buffers) 199

Recursion .. 169
Configuration of the execution console 66
Relational operators .. 116

REFERENCE
Parameter declarations in module header 146

Reference parameter .. 148
Auxiliary module parameters 144
Modules with a return value 151
Parameter declarations in module header 146

Registration ... 23
LARP updates .. 26
License agreement ... 18
Registration procedure .. 24

Registration key .. 24
Registration procedure .. 24

Registration name
Ordering super user keys 25
Registration procedure .. 24

Registration reminders .. 23
Registration procedure .. 24

Registration window .. 82
Registration procedure .. 24

Registry (WindowsÒ)
Configuration of LARP .. 64

Relational operator .. 114
Conditions .. 114
Priority of operators .. 117

REPEAT
REPEAT-UNTIL structure 134
Syntax (REPEAT-UNTIL structure) 197

REPEAT-UNTIL
FOR structure ... 135

REPEAT-UNTIL structure See Iterative structures
Repetitive structures See Iterative structures

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 219

REQUEST
Execution console ... 43

Reserved keywords
Colors in the editors .. 70
Variable names ... 87

Restrictions ... See Unlocking
Editing a textual document 46
Plagiarism prevention .. 71

Restrictions of warrantee ... 20
RETURN ... 195

Auxiliary modules .. 141
Editing a flowchart ... 52
Modules with a return value 149

Return value
Alternate call syntax .. 151
Modules with a return value 149

RND ..See ROUND
ROUND ... 109, 187

S

Saving a project
Security backups ... 63

Saving projects .. 86
Scientific notation... 89
Search ... See POSITION
Search and replace .. 46

Search and replace in a flowchart 55
Security backups ... 63

Configuration of the execution console 66
SELECT .. 196

SELECT structure ... 127
SELECT structure .. 127
Separator ... 101

Inputs through input/output channels 159
Outputs through input/output channels 160
Read instruction .. 98
Write instruction... 99

SEPARATOR .. 200
Sequential instruction

Operations... 88
Separator .. 102

Shareware
License agreement .. 18

Shareware version ... 19
Simple condition .. 114

Logical operators ... 117
Relational operators .. 115

Simple module ... 139
Auxiliary modules .. 141

SIN .. See SINUS
Single quote... 89
SINUS ... 109, 188

ARCTANGENT.. 172
SIZE .. 110, 188

COUNT ... 175
Retrieving container elements 95

Software requirements ... 21
Splash window

Ordering super user keys 25
SQRT ... See SQUAREROOT
SQUAREROOT ... 109, 189

ARCTANGENT.. 172
START... 195

Editing a flowchart ... 51
Main module .. 140

Starting LARP .. 21
Configuration of the super user mode and the

updating system .. 68
LARP updates ... 26

Statistics
Public project files ... 77

Status ... 42
Status panel .. 42

Interface elements .. 35
Step execution interface 60
Unlocking the development environment 75

STEP .. 198
FOR structure ... 135

Step execution .. 59
Animation ... 62
Break points.. 62
Step execution interface 59
Step execution modes .. 61
Step execution window ... 44
Variables inspection .. 62

STRING
Type validation ... 116

SUBSET .. 110, 111, 190
Subtraction ... See -
Super user .. 71

Configuration of the super user mode and the
updating system ... 67

Cut and paste restrictions 73
Document encryption .. 73
Editing a textual document 46
Inserting, moving and deleting flowchart instructions

 ... 54
Ordering super user keys 25
Printing restrictions ... 74
Project statistics .. 75
Public project files ... 77
Selecting a key technology 75
Unlocking the development environment 74

Super user key
Ordering super user keys 25
Selecting a key technology 75
Super user mode .. 71
USB port ... 75

Super user mode
Converting flowcharts to pseudo code 76
License agreement ... 18

Syntax ... 80
Syntax highlight ... 46

Colors in the editors .. 70
Configuration of editors ... 65

T

Tabulation ... 65
Teaching

Converting flowcharts to pseudo code 77
Document encryption .. 73
Introduction ... 17
Project statistics .. 76
Public project files ... 77
Super user mode .. 71
Unlocking the development environment 74

Technical support .. 27
Bug reports ... 29
LARP .. 31

Template
Inserting, moving and deleting flowchart instructions

 ... 53
Interface elements .. 34

Template panel ... 39
Flowchart instructions ... 50
Graphical editor’s edit commands 56
Inserting, moving and deleting flowchart instructions

 ... 53

Index LARP Users Guide

220 Copyright © 2004-2008 Marco Lavoie

Interface elements ... 34
Mouse control in the textual editor 49, 57

Temporary files
Configuration of the execution console 66

Text block
Mouse control in the textual editor 49

Textual editor ... 45
Colors in the editors .. 70
Editors ... 40
Interface elements ... 34
Message panel .. 42
Step execution modes ... 61
Syntax highlight ... 46
Textual editor configuration 47

Textual editor configuration .. 47
THEN

Conditional structures .. 113
IF and IF-ELSE structures 119
IF-ELSE-IF structure.. 123
Syntax (IF structure) .. 195
Syntax (IF-ELSE structure) 195
Syntax (IF-ELSE-IF structure) 196

TIME .. 191
TO

FOR structure .. 135
Syntax (FOR structure) .. 198

TOCHARACTERS 109, 110, 192
TOCHARS See TOCHARACTERS
Top menu .. 35

Graphical editor commands accessible through
menus ... 56

Graphical editor commands accessible through the
keyboard ... 57

Graphical editor’s edit commands 55
Interface elements ... 33
Message panel .. 42
Project statistics .. 76
Textual editor commands accessible through menus

 ... 47
Textual editor commands accessible through the

keyboard ... 49
Textual editor's edit commands 47

TOSTR .. See TOSTRING
TOSTRING .. 109, 110, 193

FORMAT ... 178
Transformation

Editing flowchart instructions 55
Trigonometric functionsSee Mathematical functions

ARCTANGENT.. 172
COSINUS .. 174
PI (p) ... 184
SINUS ... 188

Type conversion
CEILING .. 173
FLOOR .. 177
FORMAT ... 178
ROUND ... 187
TOCHARACTERS ... 192
TOSTRING .. 193

Type validation .. 116
Conditions ... 114
Container operators ... 107

U

Unconditional loop
FOR structure .. 138

UNDEFINED
Type validation .. 117

Undo operations .. 65

Uninstallation .. 22
License agreement ... 19
Registration .. 23

Unlock
Ordering super user keys 25
Super user mode .. 71

Unlock key
Configuration of the super user mode and the

updating system ... 67
Unlock key manager ... 67
Unlocking .. 74

Configuration of the super user mode and the
updating system ... 67

UNTIL
REPEAT-UNTIL structure 134
Syntax (REPEAT-UNTIL structure) 197

Updates .. 26
License agreement ... 18

Uppercase
Variable names ... 87

UPPERCASE ... 110, 194
Uppercase and lowercase

Separation of instructions 81
Uppercases and lowercases

Conversion .. 182, 194
Username

Active username ... 71
Configuration of the super user mode and the

updating system ... 67
Creating a LARP project 83
Document encryption .. 73
Project statistics .. 76
Public project files ... 77
Status panel.. 42
Super user mode .. 71
Unlocking the development environment 75
Username attached to project files 72

Users guide ... 33

V

Value limits ... 89
Value parameter

Auxiliary module parameters 144
Parameter declarations in module header 146
Value parameters ... 146

Variable... 87
Access to container elements 93
Arithmetic operators .. 105
Assignment ... 90
Local variables .. 143
Operations .. 88
Parameter declarations in module header 144
Step execution interface 60
Value parameters ... 146
Variable names ... 87
Variables inspection .. 62

Variable name ... 87

W

Walking
Step execution modes .. 61

Warnings .. 63, 201
Compilation and execution 58
Online help ... 28

Web .. 31
bugs ... 28
Configuration of the super user mode and the

updating system ... 68

LARP Users Guide Appendix E - Warnings and errors

Copyright © 2004-2008 Marco Lavoie 221

LARP updates ... 26
LARP's author ... 21
Ordering super user keys 26
Registration procedure .. 24

Welcome window ... 82
WHILE ... 197

FOR structure .. 135
REPEAT-UNTIL structure 133
WHILE structure .. 131

WHILE structureSee Iterative structures
WRITE ... 99, 200

Access modes ... 157
Colors in the execution console 69
Execution console ... 43
Outputs through input/output channels 160
Query instruction ... 100

WRITEMODE .. 157

Outputs through input/output channels 160
Syntax (files) ... 199
Syntax (input/output buffers) 199

Writing... 99
Query instruction... 100
Separator .. 102

Z

Zoom
Graphical editor commands accessible through the

keyboard .. 56
Status panel.. 42

Zoom factor
Zooming the display .. 55

Zooming .. 55

